Spelling suggestions: "subject:"condensed matter physics physics"" "subject:"dondensed matter physics physics""
1 |
High magnetic field effects in low-dimensional carbon nanostructuresAlexander-Webber, Jack A. January 2013 (has links)
This thesis describes studies of graphene, single walled carbon nanotubes (SWNTs) and InSb. Optical and electronic measurements probe the effects of high magnetic fields on these low-dimensional systems. Chapter 1 introduces a theoretical description and background behind the materials and physical phenomena studied in this work. The structure and unique properties of carbon nano-materials are described. The experimental methods used in this thesis are described in Chapter 2. Chapter 3 describes magnetotransport measurements on InSb/AlInSb heterostructures revealing that the large energy gaps, and extremely high mobility, associated with this system leads to exceptionally well defined quantum Hall plateaux for both even (Landau level) and odd (spin-split) filling factors. Even higher cyclotron energy gaps are expected in graphene. Chapter 4 reveals that due to a combination of large cyclotron energy gaps and fast electron-phonon energy loss rates, the quantum Hall effect (QHE) in graphene can be observed to unprecedented current densities (43 A/m) and temperatures (> 45 K). The behaviour of epitaxial graphene grown on silicon carbide in the quantum Hall regime is shown to be characterised by a strongly magnetic field dependent carrier density due to charge transfer from surface donor states in the substrate. Chapter 5 shows that polymer wrapping of SWNTs can achieve high quality purified samples. Individual SWNTs were probed using micro-photoluminescence measurements in magnetic fields up to 30 T. The combination of high magnetic fields and high spectral and spatial resolution allowed a detailed study of exciton fine structure. High intensity laser irradiation is shown to induce bound excitons in pristine tubes. The optical properties of a number of tubes are dominated by defect sites which may be imaged along the tube using the magnetic brightening of dark excitons associated with such defects.
|
2 |
Designing a quantum computer based on pulsed electron spin resonanceMorley, Gavin W. January 2005 (has links)
Electron spin resonance (ESR) experiments are used to assess the possibilities for processing quantum information in the electronic and nuclear spins of endohedral fullerenes. It is shown that ¹⁵N@C₆₀ can be used for universal two-qubit quantum computing. The first step in this scheme is to initialize the nuclear and electron spins that each store one qubit. This was achieved with a magnetic field of 8.6 T at 3 K, by applying resonant RF and microwave radiation. This dynamic nuclear polarization technique made it possible to show that the nuclear T₁ time of ¹⁵N@C₆₀ is on the order of twelve hours at 4.2 K. The electronic T₂ is the limiting decoherence time for the system. At 3.7 K, this can be extended to 215 μs by using amorphous sulphur as the solvent. Pulse sequences are described that could perform all single-qubit gates to the two qubits independently, as well as CNOT gates. After these manipulations, the value of the qubits should be measured. Two techniques are demonstrated for this, by measuring the nuclear spin. Sc@C₈₂ could also be useful for quantum computation. By comparing ESR measurements with density functional theory calculations, it is shown how the orientation of a Sc@C₈₂ molecule in an applied magnetic field affects the molecule's Zeeman and hyperfine coupling. Hence the g- and A-tensors are written in the coordinate frame of the molecule. Pulsed ESR measurements show that the decoherence time at 20 K is 13 μs, which is 20 times longer than had been previously reported. Carbon nanotubes have been filled with endohedral fullerenes, forming 1D arrays that could lead to a scalable quantum computer. N@C₀₆ and Sc@C₈₂ have been used for this filling in various concentrations. ESR measurements of these samples are consistent with simulations of the dipolar coupling.
|
3 |
Statistical mechanics of nucleic acids under mechanical stressMatek, Christian C. A. January 2014 (has links)
In this thesis, the response of DNA and RNA to linear and torsional mechanical stress is studied using coarse-grained models. Inspired by single-molecule assays developed over the last two decades, the end-to-end extension, buckling and torque response behaviour of the stressed molecules is probed under conditions similar to experimentally used setups. Direct comparison with experimental data yields excellent agreement for many conditions. Results from coarse-grained simulations are also compared to the predictions of continuum models of linear polymer elasticity. A state diagram for supercoiled DNA as a function of twist and tension is determined. A novel confomational state of mechanically stressed DNA is proposed, consisting of a plectonemic structure with a denaturation bubble localized in its end-loop. The interconversion between this novel state and other, known structural motifs of supercoiled DNA is studied in detail. In particular, the influence of sequence properties on the novel state is investigated. Several possible implications for supercoiled DNA structures in vivo are discussed. Furthermore, the dynamical consequences of coupled denaturation and writhing are studied, and used to explain observations from recent single molecule experiments of DNA strand dynamics. Finally, the denaturation behaviour, topology and dynamics of short DNA minicircles is studies using coarse-grained simulations. Long-range interactions in the denaturation behaviour of the system are observed. These are induced by the topology of the system, and are consistent with results from recent molecular imaging studies. The results from coarse-grained simulations are related to modelling of the same system in all-atom simulations and a local denaturation model of DNA, yielding insight into the applicability of these different modelling approaches to study different processes in nucleic acids.
|
4 |
Topological Photonic Lattices / Topologiska fotoniska gitterXu, Zesheng January 2022 (has links)
Topological Photonics is a rapidly growing field which explores the ideas of topological invariants adapted from condensed matter physics to optical systems. Thanks to integrated photonics platforms, the evolution of light in nanoscale photonic lattices can enable direct measurement of topological properties of the band-structure. In this degree project, we study the topological Anderson phase transition in disordered one-dimensional lattices, and probe distinct topological phases in photonic superlattices. In first part, we fabricate photonic lattices with different disorder strength, and observe the topological transition from trivial topological Anderson phase to non-trivial topological Anderson phase as the system disorder is increased. In second part, we focus on probing the Zak phase in photonic superlattices. We fabricate a superlattice system that utilizes either bulk excitation or edge excitation. We identify the trivial and non-trivial Zak phase using two methods: first, through reconstructing the intensity evolution in the edge waveguide, second, through calculating the beam displacement in the case of bulk excitation . In order to study the evolution of the light in the nano-scaled photonic lattices, we develop a novel technique: Loss-Induced Scattering Approach (LISA), which enables high fidelity reconstruction of the photonic state evolving in the lattice. / Topologisk fotonik är ett snabbt växande område som utforskar idéerna om topologiska invarianter anpassade från kondenserad materiens fysik till optiska system. Tack vare integrerade fotonikplattformar kan ljusutvecklingen i fotoniska gitter i nanoskala möjliggöra direkt mätning av topologiska egenskaper hos bandstrukturen. I detta examensarbete studerar vi den topologiska Anderson-fasövergången i oordnade endimensionella gitter, och undersöker distinkta topologiska faser i fotoniska supergitter. I den första delen tillverkar vi fotoniska gitter med olika störningsstyrka och observerar den topologiska övergången från trivial topologisk Anderson-fas till icke-trivial topologisk Anderson-fas när systemstörningen ökar. I den andra delen fokuserar vi på att sondera Zak-fasen i fotoniska supergitter. Vi tillverkar ett supergittersystem som använder antingen bulkexcitering eller kantexcitering. Vi identifierar den triviala och icke-triviala Zak-fasen med två metoder: för det första genom att rekonstruera intensitetsutvecklingen i kantvågledaren, för det andra genom att beräkna strålens förskjutning vid bulkexcitation. För att studera utvecklingen av ljuset i de nanoskalade fotoniska gittren, utvecklar vi en ny teknik: Loss-Induced Scattering Approach (LISA), som möjliggör högtrohetsrekonstruktion av det fotoniska tillståndet som utvecklas i gittret.
|
5 |
Plasmonic nanostructures and film crystallization in perovskite solar cellsSaliba, Michael January 2014 (has links)
The aim of this thesis is to develop a deeper understanding and the technology in the nascent field of solid-state organic-inorganic perovskite solar cells. In recent years, perovskite materials have emerged as a low-cost, thin-film technology with efficiencies exceeding 16% challenging the quasi-paradigm that high efficiency photovoltaics must come at high costs. This thesis investigates perovskite solar cells in more detail with a focus on incorporating plasmonic nanostructures and perovskite film formation. Chapter 1 motivates the present work further followed by Chapter 2 which offers a brief background for solar cell fabrication and characterisation, perovskites in general, perovskite solar cells in specific, and plasmonics. Chapter 3 presents the field of plasmonics including simulation methods for various core-shell nanostructures such as gold-silica and silver-titania nanoparticles. The following Chapters 4 and 5 analyze plasmonic core-shell metal-dielectric nanoparticles embedded in perovskite solar cells. It is shown that using gold@silica or silver@titania NPs results in enhanced photocurrent and thus increased efficiency. After photoluminescence studies, this effect was attributed to an unexpected phenomenon in solar cells in which a lowered exciton binding energy generates a higher fraction of free charge. Embedding thermally unstable silver NPs required a low-temperature fabrication method which would not melt the Ag NPs. This work offers a new general direction for temperature sensitive elements. In Chapters 6 and 7, perovskite film formation is studied. Chapter 6 shows the existence of a previously unknown crystalline precursor state and an improved surface coverage by introducing a ramped annealing procedure. Based on this, Chapter 7 investigates different perovskite annealing protocols. The main finding was that an additional 130°C flash annealing step changed the film crystallinity dramatically and yielded a higher orientation of the perovskite crystals. The according solar cells showed an increased photocurrent attributed to a decrease in charge carrier recombination at the grain boundaries. Chapter 8 presents on-going work showing noteworthy first results for silica scaffolds, and layered, 2D perovskite structures for application in solar cells.
|
Page generated in 0.095 seconds