Spelling suggestions: "subject:"condensedmatter physics"" "subject:"kondensvatten physics""
711 |
Mapping the binding energy of H inside amorphous and crystalline transition metals using the effective medium theorySpode, Lennart January 2020 (has links)
No description available.
|
712 |
Electronic Fabry-Perot Interferometry of Quantum Hall Edge StatesJames R Nakamura (8999573) 23 June 2020 (has links)
Two-dimensional electron systems in GaAs/AlGaAs heterostructures have provided a platform for investigating numerous phenomena in condensed matter physics. The quantum Hall effect is a particularly remarkable phenomenon due to its topological properties, including chiral edge states with quantized conductance. This report describes progress made in interference measurements of these edge states in electronic Fabry-Perot interferometers. Previous interference experiments in the quantum Hall regime have been stymied by Coulomb charging effects and poor quantum coherence. These Coulomb charging effects have been dramatically suppressed by the implementation of a novel GaAs/AlGaAs heterostructure which utilizes auxiliary screening wells in addition to the primary GaAs quantum well. Using this heterostructure, Aharonov-Bohm interference is measured in very small devices which have greatly improved coherence. Robust Aharonov-Bohm interference is reported at fractional quantum Hall states nu = 1/3 and nu = 2/3. Discrete jumps in phase at nu = 1/3 consistent with anyonic braiding statistics are observed. The report concludes with proposed future experiments, including extending these results to possible non-Abelian quantum Hall states.
|
713 |
Ab initio Interlayer Potentials For Metals and AlloysTian, Fuyang January 2012 (has links)
Many modern materials and material systems are layered. The properties related to layers are connected to interactions between atomic layers. In the present thesis, we introduce the interlayer potential (ILP), a novel model potential which fully describes the interaction between layers. The ILPs are different from the usual interatomic potentials which present interaction between atoms. We use the Chen-Möbius inversion method to extract the ILPs from ab initio total energy calculations. The so obtained ILPs can be employed to investigate several physical parameters connected with the particular set of atomic layers, e.g. surface energy, stacking fault energy, elastic parameters, etc. The interactions between the face centered cubic (fcc) (111) planes are described by two different ILPs. Using two close-packed model structures, namely the ABC stacking along the fcc ⟨111⟩ direction and AB stacking along the hcp ⟨0001⟩ direction, we demonstrate how these two ILPs are obtained via the Chen-Möbius method. Density function theory (DFT) is employed to generate the ILPs and also to compute the equilibrium structural properties of elemental metals Al, Ni, Cu, Ag, Au and Pd as well as of Pd-Ag random solid solutions. With the so established ILPs, we adopt the supercell method and the axial interaction model to calculate the stacking fault energy along the fcc ⟨111⟩ direction, including the intrinsic stacking fault energy, extrinsic stacking fault energy and twin stacking fault energy as well as the interactions between the intrinsic stacking faults. We find that the data derived from ILPs are consistent with those obtained in direct ab initio calculations. Along the fcc ⟨111⟩ direction, we study the surface energy and surface relaxation using the ILPs. The phonon dispersions are also described. We conclude that the interlayer potentials based on the Chen-M¨obius inversion technique may provide a new way to investigate the properties related to layers in layered materials. / <p>QC 20121101</p>
|
714 |
Density Functional Theory Calculations of Graphene based Humidity and Carbon Dioxide SensorsElgammal, Karim January 2016 (has links)
Graphene has many interesting physical properties which makes it useful for plenty of applications. In this work we investigate the possibility of using graphene as a carbon dioxide and humidity sensor. Carbon dioxide and water adsorbates are modeled on top of the surface of a graphene sheet, which themselves lie on one of two types of silica substrates or sapphire substrate. We evaluate the changes in the electronic and structural properties of the graphene sheet in the presence of the described adsorbates as well as the accompanying substrate. We perform the study using ab-initio calculations based on density functional theory (DFT), that allows fast, accurate and efficient investigations. In particular, we focus our attention on investigating the effects of defects in the substrate and how it influences the properties of the graphene sheet. The defects of the substrate contribute with impurity bands leading to doping effects on the graphene sheet, which in turn together with the presence of the adsorbates result in changes of the electronic charge distribution in the system. We provide charge density difference plots to visualize these changes and also determine the relaxed minimum distances of the adsorbates from the graphene sheet together with the respective minimum energy configurations. We also include the density of states, Löwdin charges and work functions for further investigations. / Grafen har många intressanta fysikaliska egenskaper, vilket gör det användbart för många tillämpningar. I detta arbete har vi teoretiskt undersökt möjligheten att använda grafen som gassensor för koldioxid och fukt. Adsorberade koldioxid- och vattenmolekyler modelleras ovanför ytan av ett lager grafen, som i sig ligger ovanpå en av två typer av kiseldioxidsubstrat eller ett aluminiumoxidsubstrat. Vi har utvärderat förändringar i de elektroniska och strukturella egenskaperna hos grafenlagret i närvaro av de beskrivna molekylerna samt åtföljande substrat. Vi utför studien med ab-initio beräkningar baserade på täthetsfunktionalteori (DFT), som möjliggör snabba, korrekta och effektiva elektronstruktursberäkningar. Framför allt fokuserar vi på effekten av defekter i underlaget, och hur dessa påverkar egenskaperna hos grafenlagret. Defekter i underlaget bidrar genom att införa elektroniska band som leder till dopningseffekter i grafenlagret, vilket i sin tur tillsammans med närvaron av adsorbatmolekylerna leder till förändringar av den elektroniska laddningsfördelningen i systemet. Vi tillhandahåller s.k. laddningsdensitet-skillnadsfigurer som visualiserar dessa förändringar. Vi har även beräknat jämviktsavståndet mellan adsorbatmolekylerna och grafenlagret tillsammans med respektive minimienergikonfigurationer för molekylerna, Vi åksa tillhandahåller täthet av stater, Löwdin laddningar och arbetsfunktion för fortsatta undersökningar. / <p>QC 20160218</p>
|
715 |
The Effect of Long Range Order on Elastic Properties of AlloysWang, Guisheng January 2014 (has links)
Ab initio alloy theory, formulated within the exact muffin-tin orbitals method in combination with the coherent-potential approximation, is used to determine the effect of long range order on the elastic properties. The lattice parameters and single-crystal elastic constants of Cu3Au are calculated for different partially ordered structures ranging from the fully ordered L12 to the random face centered cubic lattice. Special attention is put on the chemical and magnetic effects and on the interplay between these two degrees of freedom. For non-magnetic Cu3Au, it was found that the lattice parameters and single-crystal elastic constants follow a clear trend with the degree of chemical order: namely, C11 and C12 decrease slightly, whereas C44 remains nearly constant with increasing disorder. As none of the single-crystal elastic constants were modified significantly due to the long-range-order, the polycrystalline elastic moduli of Cu3Au also keep nearly constant upon ordering. The Debye temperature does not show a strong chemical order dependence either. Using the calculated Debye temperatures, we find that for the entropy change upon order-disorder transition varies between −0.018 kB and 0.022 kB, the upper value being surprisingly close to 0.023 kB observed in experiments. However, some of the elastic constants of ferromagnetic Ni3Fe, adopting the same crystal lattice as Cu3Au, were affected considerably. For the lattice parameter a, the main effect of magnetism is concentrated in the chemically dis-ordered region, with long-range order parameter S below ∼ 0.6 and the effect gradually disappears with increasing S. In the ferromagnetic state, the lattice parameter is almost constant as a function of the degree of order. Out of the three single-crystal elastic constants, only C11 and C12 are found to be affected by magnetism in the ordered state, however, their combined effect results in a nearly constant bulk modulus as a function of S. C44 changes slightly with S and magnetic state. The tetragonal shear elastic constant C´ , the Young’s modulus E and the shear modulus G increase significantly with the degree of order in the ferromagnetic state, but the effect becomes weak as the system approaches the random regime. Especially the C´ shear elastic constant depends strongly on the magnetic state and the degree of order. As a result, the Zener anisotropy ratio C44/C´ and the Possion’s ratio are strongly affected by the long-range order in the ferromagnetic state. Nevertheless, the actual values for the Pugh ratio and the Cauchy pressure remain far from their critical values, indicating that the ductility of Ni3Fe is not influenced by the chemical/magnetic ordering. Interestingly, the ferromagnetic L12 system possesses ∼5.4% larger elastic Debye temperature than the paramagnetic one, which in turn has similar ΘD as the chemically disordered face centered cubic phase being in either ferro-or paramagnetic state. The implications of the chemical/magnetic order on the mechanical properties and order-disorder transition is discussed. / <p>QC 20140929</p>
|
716 |
Gilbert damping of doped permalloy from first principles calculationsPan, Fan January 2015 (has links)
The dynamic process of how fast a spintronic device can be switched from one state to another is characterized by the Gilbert damping parameter. It has been found that the Gilbert damping along with other intrinsic properties in permalloy, can be tuned by different dopants and doping concentration. Therefore, a study of intrinsic magnetic properties with emphasis on the dependence of the Gilbert damping parameter from first principles calculations is investigated. It is aimed at to give an insight of the microscopic understanding originated from electronic structure and to provide a guideline in the practical spintronic design. The topic of the present thesis is to investigate, by means of first principle calculations, how the variation of the Gilbert damping parameter depends upon the electronic structure of pure and doped permalloy. We show that the Gilbert damping has a monotonic increase with the doping concentration due to an increasing amount of scattering processes. The dopants of the 5d transition metal give rise to a much larger impact than the 4d, as the spin orbit coupling effect is more pronounced in the heavy elements. Our results are in satistying agreement with experiment. / <p>QC 20150629</p>
|
717 |
Influence of selective proton exchange on periodically poled lithium niobateManzo, Michele January 2010 (has links)
The purpose of the present thesis is to study the influence of Proton Exchange on Electric Field assisted Poling of congruent Lithium Niobate and its applications on periodically pat-terned structures. Moreover, the possibility of using Proton Exchange to avoid neighbours domains merging is studied and successfully demonstrated for period shorter than 10μm. Before approaching the poling of periodically patterned LiNbO3 samples, the main charac-teristics of the evolution of the poling of uniform samples in different masking conditions are investigated. It is well known that the kinetics of domains switching is highly dependent on the poling setup and on the quality/type of electrode employed to contact the crystal to the high voltage. We used a thin layer of Titanium both as mask for proton diffusion and as metal electrode for poling experiments. Moreover different masking configurations are pre-sented and characterized. The second part of this work deals with the periodic poling of 0.5mm-thick congruent lith-ium niobate. 9x4 mm2 1-D Ti gratings with 8.66μm and 8.03μm period were first fabricated on the +z side of the crystal and a superficial chemical pattern was reproduced via acid bath. Three different types of samples were obtained and before the poling the metallic mask was removed whereas in one configuration it was left assuring better homogeneity of the in-verted areas. The results we obtained suggest it could be possible to achieve periodically poled congruent lithium niobate gratings with period shorter than 4μm in ~500μm thick samples and hence obtain aspect ratios of more than 250.
|
718 |
Computerized data analysis of numerous spectra fromindividual quantum dots : Identifying Quantum-dot signals by Image-processingShamsa, Arya January 2012 (has links)
In this work an image processing software was developed to extract single nanocrystals luminescence spectra from spectral images containing various noises and parasitic signals. This software helps users to process and analyze experimental data in a simplified and intuitive way and allows quick analysis of large volumes of data. The output results are the distributions of peak emission energy and inter-peak spacing. The software also generates text-files containing the extracted information for further analysis. Also experimental photoluminescence measurements have been performed at liquid nitrogen temperature of 77K, on phosphorous doped silicon nanocrystals. The data were analyzed with the developed software and with other data confirm previous results indicating the accuracy of the methodology used in the code. The implementation of this software for data analysis can process information without human bias and hopefully find hidden patterns that previously been lost when analyzing data manually.
|
719 |
Terahertz Time Domain Spectroscopy Techniques for Antiferromagnets and MetamaterialsHeligman, Daniel Michael January 2021 (has links)
No description available.
|
720 |
Fabrication and Characterization of Superconductive Coplanar Waveguide Resonators : Fabrication and Characterization of Superconductive Coplanar Waveguide ResonatorsErgül, Adem January 2009 (has links)
The objective of this thesis is to evaluate a generic process for fabrication and characterization of the Superconductive coplanar waveguide (CPW) resonators. Superconductive CPW resonators with various lengths and shapes are designed to investigate their electrical and magnetic properties as well as resonance properties and sensitivities. In the first part of thesis, two different models are introduced in order to estimate the nonlinear kinetic inductance of a superconducting CPW resonator. The first model is based on Bean critical-state model and the second one is based on current dependence of London penetration depth. The existence of a shift in resonant frequency of Superconductive CPW resonator caused by a non-linear kinetic inductance is also shown experimentally. Simulations were carried out to estimate the nonlinear kinetic inductance due to the self- induced magnetic field penetration. The rest of the thesis is concerned with development of very smooth Aluminum (Al) thin films with RMS (Root Mean Square) roughness 1~nm and CAD (Computer Aid Design) of superconductive CPW resonators. Experimental investigation of a generic fabrication technique for superconductive CPW resonator is carried out. Many resonators are fabricated with different design parameters, such as centerline or gap width, film thickness and gap capacitors length. The fabrication process is described in detail. Electron Beam Lithography is used to fabricate Nb and Al CPW resonators which are coupled to outer conductors via gap capacitors. We have fabricated GHz frequency CPW resonators with quality factors, Q up 5X10^5.
|
Page generated in 0.0777 seconds