• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Existência e multiplicidade de soluções de problemas de contorno elípticos de quarta ordem via métodos topológicos / Existence and multiplicity of solutions to elliptic boundary value problems by topological methods

SILVA, Kaye Oliveira da 24 February 2012 (has links)
Made available in DSpace on 2014-07-29T16:02:19Z (GMT). No. of bitstreams: 1 Dissertacao Kaye O da Silva.pdf: 935849 bytes, checksum: 3342ffadf63161660c1795053815a170 (MD5) Previous issue date: 2012-02-24 / In this work, we employ topological methods in order to study existence and multiplicity of solutions, of nonlinear boundary value problems of the fourth order. More precisely, we make use of results on connected components of fixed points, as well as global bifurcation, to show existence and multiplicity of weak solutions of Partial Differential Equations, involving the Biharmonic operator under Navier boundary conditions. Proofs of the abstract results used, are presented in detail. / Neste trabalho, utilizamos métodos topológicos para estudar existência e multiplicidade de soluções de Problemas de Contorno Elípticos Não Lineares de 4a ordem. Mais precisamente, utilizamos resultados sobre componentes conexas de pontos fixos e tambem bifurcação global, para provar existência e multiplicidade de soluções fracas de Equações Diferenciais Parciais, envolvendo o Operador Binarmônico, sob condições de fronteira de Navier. As demonstrações dos resultados abstratos que utilizamos, são apresentadas em detalhes.

Page generated in 0.0391 seconds