Spelling suggestions: "subject:"conditional simulations"" "subject:"konditional simulations""
1 |
Sur le conditionnement des modèles génétiques de réservoirs chenalisés méandriformes à des données de puits / On the conditioning of process-based channelized meandering reservoir models on well dataBubnova, Anna 11 December 2018 (has links)
Les modèles génétiques de réservoirs sont construits par la simulation des principaux processus de sédimentation dans le temps. En particulier, les modèles tridimensionnels de systèmes chenalisés méandriformes peuvent être construits à partir de trois processus principaux : la migration du chenal, l’aggradation du système et les avulsions, comme c’est réalisé dans le logiciel Flumy pour les environnements fluviatiles. Pour une utilisation opérationnelle, par exemple la simulation d'écoulements, ces simulations doivent être conditionnées aux données d'exploration disponibles (diagraphie de puits, sismique, …). Le travail présenté ici, basé largement sur des développements antérieurs, se concentre sur le conditionnement du modèle Flumy aux données de puits.Deux questions principales ont été examinées au cours de cette thèse. La première concerne la reproduction des données connues aux emplacements des puits. Cela se fait actuellement par une procédure de "conditionnement dynamique" qui consiste à adapter les processus du modèle pendant le déroulement de la simulation. Par exemple, le dépôt de sable aux emplacements de puits est favorisé, lorsque cela est souhaité, par une adaptation des processus de migration ou d'avulsion. Cependant, la manière dont les processus sont adaptés peut générer des effets indésirables et réduire le réalisme du modèle. Une étude approfondie a été réalisée afin d'identifier et d'analyser les impacts indésirables du conditionnement dynamique. Les impacts ont été observés à la fois à l'emplacement des puits et dans tout le modèle de blocs. Des développements ont été réalisés pour améliorer les algorithmes existants.La deuxième question concerne la détermination des paramètres d’entrée du modèle, qui doivent être cohérents avec les données de puits. Un outil spécial est intégré à Flumy - le "Non-Expert User Calculator" (Nexus) - qui permet de définir les paramètres de simulation à partir de trois paramètres clés : la proportion de sable, la profondeur maximale du chenal et l’extension latérale des corps sableux. Cependant, les réservoirs naturels comprennent souvent plusieurs unités stratigraphiques ayant leurs propres caractéristiques géologiques. L'identification de telles unités dans le domaine étudié est d'une importance primordiale avant de lancer une simulation conditionnelle avec des paramètres cohérents pour chaque unité. Une nouvelle méthode de détermination des unités stratigraphiques optimales à partir des données de puits est proposée. Elle est basée sur la Classification géostatistique hiérarchique appliquée à la courbe de proportion verticale (VPC) globale des puits. Les unités stratigraphiques ont pu être détectées à partir d'exemples de données synthétiques et de données de terrain, même lorsque la VPC globale des puits n'était pas visuellement représentative. / Process-based reservoir models are generated by the simulation of the main sedimentation processes in time. In particular, three-dimensional models of meandering channelized systems can be constructed from three main processes: migration of the channel, aggradation of the system and avulsions, as it is performed in Flumy software for fluvial environments. For an operational use, for instance flow simulation, these simulations need to be conditioned to available exploration data (well logging, seismic, …). The work presented here, largely based on previous developments, focuses on the conditioning of the Flumy model to well data.Two main questions have been considered during this thesis. The major one concerns the reproduction of known data at well locations. This is currently done by a "dynamic conditioning" procedure which consists in adapting the model processes while the simulation is running. For instance, the deposition of sand at well locations is favored, when desired, by an adaptation of migration or avulsion processes. However, the way the processes are adapted may generate undesirable effects and could reduce the model realism. A thorough study has been conducted in order to identify and analyze undesirable impacts of the dynamic conditioning. Such impacts were observed to be present both at the location of wells and throughout the block model. Developments have been made in order to improve the existing algorithms.The second question is related to the determination of the input model parameters, which should be consistent with the well data. A special tool is integrated in Flumy – the Non Expert User calculator (Nexus) – which permits to define the simulation parameters set from three key parameters: the sand proportion, the channel maximum depth and the sandbodies lateral extension. However, natural reservoirs often consist in several stratigraphic units with their own geological characteristics. The identification of such units within the studied domain is of prime importance before running a conditional simulation, with consistent parameters for each unit. A new method for determining optimal stratigraphic units from well data is proposed. It is based on the Hierarchical Geostatistical Clustering applied to the well global Vertical Proportion Curve (VPC). Stratigraphic units could be detected from synthetic and field data cases, even when the global well VPC was not visually representative.
|
2 |
Stochastic analysis of flow and transport in porous mediaVasylkivska, Veronika S. 06 September 2012 (has links)
Random fields are frequently used in computational simulations of real-life processes. In particular, in this work they are used in modeling of flow and transport in porous media. Porous media as they arise in geological formations are intrinsically deterministic but there is significant uncertainty involved in determination of their properties such as permeability, porosity and diffusivity. In many situations description of properties of the porous media is aided by a limited number of observations at fixed points. These observations constrain the randomness of the field and lead to conditional simulations.
In this work we propose a method of simulating the random fields which respect the observed data. An advantage of our method is that in the case that additional data becomes available it can be easily incorporated into subsequent representations. The proposed method is based on infinite series representations of random fields. We
provide truncation error estimates which bound the discrepancy between the truncated series and the random field. We additionally provide the expansions for some processes that have not yet appeared in the literature.
There are several approaches to efficient numerical computations for partial differential equations with random parameters. In this work we compare the solutions of flow and transport equations obtained by conditional simulations with Monte Carlo (MC) and stochastic collocation (SC) methods. Due to its simplicity MC method is one of the most popular methods used for the solution of stochastic equations. However, it is computationally expensive. The SC method is functionally similar to the MC method but it provides the faster convergence of the statistical moments of the solutions through the use of the carefully chosen collocation points at which the flow
and transport equations are solved. We show that for both methods the conditioning on measurements helps to reduce the uncertainty of the solutions of the flow and transport equations. This especially holds in the neighborhood of the conditioning points. Conditioning reduces the variances of solutions helping to quantify the uncertainty in the output of the flow and transport equations. / Graduation date: 2013
|
Page generated in 0.1511 seconds