• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 223
  • 78
  • 56
  • 37
  • 12
  • 10
  • 9
  • 8
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 516
  • 72
  • 70
  • 69
  • 53
  • 50
  • 47
  • 42
  • 41
  • 41
  • 41
  • 39
  • 38
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Theoretical and numerical modelling of electronic transport in nanostructures

Szczesniak, Dominik 28 January 2013 (has links) (PDF)
The aim of this thesis in the nanoelectronics domain is to present a contribution to the analysis of the quantum electronic transport phenomena in nanostructures. For this purpose, we specifically develop the phase field matching theory (PFMT). Within this algebraic approach the electronic properties of the system are described by the tight-binding formalism, whereas the analysis of the transport properties based on the phase matching of the electronic states of the leads to the states of the molecular nanojunctions. By comparing some of our results with those of the first principles methods, we have shown the correctness and fonctionality of our approach. Moreover, our method can be considered as a practical and general alternative to the Green's function-based techniques, and is applied in this work to model the electronic transport across mono and diatomic nanojunctions, consisting of mono and multivalent Na, Cu, Co, C, Si, Ga and As elements.
152

Elastic Scattering Phenomena in Molecularly-linked Gold Nanoparticle Films

Dunford, Jeffrey Loren 19 January 2009 (has links)
We have investigated the conductance, g, of 1,4-butanedithiol linked Au nanoparticle films as a function of temperature, T, bias potential, V, and applied magnetic field, B. An interesting temperature dependence is observed for non-metallic films with thicknesses just below a critical film thickness: g ~ exp [-(T_0/T)^(1/2)] for 20 K < T < 300 K. We show that this temperature dependence is incompatible with an Efros-Shklovskii "variable range hopping" model, since "hopping distances" are too large to be consistent with tunneling processes, and tend to scale with size of super-clusters of molecularly-linked nanoparticles. We propose a "quasilocalized hopping" model based on competition between single-electron charging of super-clusters and electron backscattering within super-clusters to explain the observed temperature dependence. Various electron scattering time scales are extracted from magnetoconductance data using a modified "weak localization" model. Elastic scattering time scales are comparable to those required for an electron to traverse a nanoparticle, while inelastic and spin-orbit scattering time scales are consistent with those found in studies of conventionally-prepared granular Au films. At interfaces between metallic 1,4-butanedithiol-linked Au nanoparticle films and conventional superconductors, we find that g consistently exhibits peaks, as well as oscillations, that depend simultaneously on both V and B. Such peaks and correlated conductance oscillations are predicted by an enhanced Andreev reflection process due to disorder-driven elastic scattering and electron-hole interference in the nanoparticle film. While oscillations have been predicted by a so-called "reflectionless tunneling" model, they have not been observed at other normal-superconductor interfaces. We speculate that oscillations are observable in this system due to synthetically controlled uniformity of elastic scattering length (i.e., nanoparticle diameter) and a reduced number of current-carrying pathways, especially near the interface. Contrary to predictions of existing "reflectionless tunneling" models, we find that the periods of oscillation in B decrease as T increases. This suggests that the area of interfering pathways increases with T. We propose that this increasing area can be attributed to magnetic field penetration into the superconductor. Conductance data agrees remarkably well with known temperature dependence of penetration depth predicted by BCS theory. Our study shows that this additional region of flux must be considered in experimental and theoretical studies of "reflectionless tunneling", and underscores the utility of molecularly-linked nano\-particle films as a platform for studying charge transport.
153

Characterization and molecular mapping of drought tolerance in kabuli chickpea (<i>Cicer arietinum L.</i>)

Rehman, Aziz Ur 12 January 2009
Abstract Drought is the most common abiotic stress limiting chickpea production in the world. Ninety percent of the worlds chickpea is produced in areas relying upon conserved, receding soil moisture, therefore, crop productivity is largely dependent on efficient utilization of available soil moisture. Because of the variability in drought pattern from year to year, trait based selection could have an advantage over selection on the basis of grain yield alone. Trait based breeding, however, requires trait dissection into components. Successful marker identification would facilitate integration of MAS procedures in breeding programs enabling the pyramiding of favourable alleles.<p> The genetic map produced in this study was based on a population of recombinant inbred lines of a cross of ILC 588 x ILC 3279 containing 52 SSR markers spanned 335 cM of the chickpea genome at an average density of 6.4 cM. A total of 13 genomic regions were shown to be associated with drought tolerance traits. Some of these genomic regions showed pleiotropic effect on multiple traits. This was also supported by the analysis of phenotypic data where these traits were found to be correlated. For example, early flowering and maturity had a strong association with high grain yield. High grain yield was also associated with better portioning ability between biomass and grain yield, i.e. harvest index. Drought tolerance score (DTS) was associated with various important traits including biomass, early flowering, early maturity.<p> This study also concluded that chickpea genotypes differed in terms of root length, root length density, root weight density and root length to weight ratio at every 20 cm soil layer up to 100 cm depth in response to water deficits. Consideration of an efficient root system vs. a larger root system is also important, since in this research, large root systems were offset by low harvest index, presumably due to the lack of assimilate available for grain growth. A restricted root system is important in environments like Western Canada, where crop growth termination is usually required prior to fall frost. This study also reported significant associations of stomatal conductance (gs) with each of HI, grain yield under drought, drought susceptibility index and drought tolerance score (DTS). Stomatal conductance can also be used to assess plant stress due to drought. Values of gs less than 250 mmol m-2s-1 during flowering indicated drought stress under greenhouse conditions. A higher degree of plant stress due to drought was shown by increased stomatal closure at midday (gs <150 mmol m-2s-1). The study of 157 RILs under natural drought stress during 2005-07 revealed that the 17 RILs which had high grain yield under drought (Group A), also tended to have higher gs than the 42 RILs that had lower grain yield (Group B). Group A had mean gs values of 390 mmol m-2s-1 during the week before flowering, while Group B had mean gs value of 330 mmol m-2s-1. Stomatal conductance increased at flowering and then sharply decreased later in the reproductive period, particularly in Group B. These findings were also supported by canopy temperature differential measurements as Group A was also able to maintain lower canopy temperature than Group B, indicating the ability of these plants to maintain adequate transpiration and a cooler canopy under drought stress. This research indicated that gs and canopy temperature can be used to assess chickpea drought stress and to screen drought tolerant genotypes. This study identified a QTL on LG7 for gs, QTLs on LG1, LG3 and LG6 associated with canopy temperature differential, as well as QTLs associated with grain yield under drought, HI, DTS, days to flower, days to maturity, reproductive period and plant height. These QTLs identified for traits related to higher chickpea productivity under drought stress could have important implications for accelerating the process of pyramiding of favourable genes into adapted genotypes and on future marker-assisted breeding for drought prone areas.
154

Elastic Scattering Phenomena in Molecularly-linked Gold Nanoparticle Films

Dunford, Jeffrey Loren 19 January 2009 (has links)
We have investigated the conductance, g, of 1,4-butanedithiol linked Au nanoparticle films as a function of temperature, T, bias potential, V, and applied magnetic field, B. An interesting temperature dependence is observed for non-metallic films with thicknesses just below a critical film thickness: g ~ exp [-(T_0/T)^(1/2)] for 20 K < T < 300 K. We show that this temperature dependence is incompatible with an Efros-Shklovskii "variable range hopping" model, since "hopping distances" are too large to be consistent with tunneling processes, and tend to scale with size of super-clusters of molecularly-linked nanoparticles. We propose a "quasilocalized hopping" model based on competition between single-electron charging of super-clusters and electron backscattering within super-clusters to explain the observed temperature dependence. Various electron scattering time scales are extracted from magnetoconductance data using a modified "weak localization" model. Elastic scattering time scales are comparable to those required for an electron to traverse a nanoparticle, while inelastic and spin-orbit scattering time scales are consistent with those found in studies of conventionally-prepared granular Au films. At interfaces between metallic 1,4-butanedithiol-linked Au nanoparticle films and conventional superconductors, we find that g consistently exhibits peaks, as well as oscillations, that depend simultaneously on both V and B. Such peaks and correlated conductance oscillations are predicted by an enhanced Andreev reflection process due to disorder-driven elastic scattering and electron-hole interference in the nanoparticle film. While oscillations have been predicted by a so-called "reflectionless tunneling" model, they have not been observed at other normal-superconductor interfaces. We speculate that oscillations are observable in this system due to synthetically controlled uniformity of elastic scattering length (i.e., nanoparticle diameter) and a reduced number of current-carrying pathways, especially near the interface. Contrary to predictions of existing "reflectionless tunneling" models, we find that the periods of oscillation in B decrease as T increases. This suggests that the area of interfering pathways increases with T. We propose that this increasing area can be attributed to magnetic field penetration into the superconductor. Conductance data agrees remarkably well with known temperature dependence of penetration depth predicted by BCS theory. Our study shows that this additional region of flux must be considered in experimental and theoretical studies of "reflectionless tunneling", and underscores the utility of molecularly-linked nano\-particle films as a platform for studying charge transport.
155

Modulations physiologiques et comportementales de la douleur sociale

Cristofori, Irène 09 September 2011 (has links) (PDF)
La douleur sociale est une forme de douleur non physique dérivant de la perception de l'exclusion sociale. L'importance de la compréhension de ses modulations comportementales et neuronales est fondamentale, car ses conséquences sur le long terme peuvent être très néfastes. Dans ce travail de thèse, j'ai exploré ces aspects à travers une étude comportementale à l‟aide d‟enregistrements par SCR (Skin Conductance Recording), et trois études en iEEG (électro-encéphalographie intracrânienne) chez des patients épileptiques. La première étude comportementale a exploré la direction dans laquelle l'exclusion sociale est influencée par une récompense et ses réactions sur le long terme. Ainsi, la récompense monétaire altère l'équilibre social et augmente l‟activité électrodermale. La personne ayant été exclue met alors en oeuvre des mécanismes de vengeance en défavorisant la personne qui l‟a exclue précédemment. Les études en iEEG ont été une fenêtre unique d'exploration du cerveau lors de différentes types de modulation de l'exclusion. Dans la première étude en iEEG, nous avons observé que la douleur sociale produit une activation des oscillations thêta (3-7 Hz), lors de d'exclusion, dans l'insula, l'ACC, le cortex préfrontal et le gyrus fusiforme. La deuxième étude iEEG s'est intéressée aux modulations produites par la douleur sociale dans BA 19 et BA 17 présentant des P1 d'amplitude majeure lors de l'observation des photos du joueur qui exclut. La troisième étude en iEEG a exploré la réponse neuronale de l'influence d'une variable monétaire lors de l'exclusion. Nos résultats démontrent que l'insula postérieure présente une activation thêta indépendante du fait que l'exclusion soit positive (exclusion et gain d'argent) ou encore négative (exclusion et perte d'argent), à la différence de l'insula antérieure, active seulement lors d'une exclusion négative
156

College Men's Psychological and Physiological Responses Associated with Violent Video Game Play

Powell, Cecil Lamonte 22 April 2008 (has links)
Research suggests that playing violent video games increases the likelihood of aggression. However, less clear is how individual characteristics influence the mechanisms that lead to aggression. Using Anderson and Bushman’s (2002) General Aggression Model as a framework, the present study examined the independent and joint effects of individual differences and situational factors on affective and physiological reactivity to playing a violent video game. One hundred thirty-three participants completed self-report measures of trait aggression and violent video game exposure. They were randomly assigned to groups instructed to play a video game using either violent or nonviolent strategies while facial electromyography, heart rate, and electrodermal activity were measured. Positive and negative affect was assessed via self-report prior to and following video game play. It was hypothesized that trait aggression and level of past exposure to violent video games would be positively related to increases in physiological arousal and negative affect among participants in a violent, relative to a nonviolent, condition. Hierarchical regression analyses failed to detect a significant relationship between trait aggression and changes in heart rate, facial electromyography, or self-reported affect as a function of game condition. However, significant positive relationships were found between trait aggression and skin conductance, but only in the nonviolent condition. Analyses revealed that past exposure to violent video games was positively related to increased skin conductance among participants in the non-violent, but not the violent video game condition. Past exposure to violent video games was also positively related to increased heart rate, but this was among participants in the violent, but not the non-violent condition. Significant relationships between past exposure to violent video games and changes in facial electromyography and self-reported affect as a function of video game condition were not found. Findings are discussed in terms of how trait aggression and past exposure to violent video games influence arousal, and potentially, the likelihood of aggressive behavior.
157

Modeling of Thermal Joint Resistance for Sphere-Flat Contacts in a Vacuum

Bahrami, Majid January 2004 (has links)
As a result of manufacturing processes, real surfaces have roughness and surface curvature. The real contact occurs only over microscopic contacts, which are typically only a few percent of the apparent contact area. Because of the surface curvature of contacting bodies, the macrocontact area is formed, the area where microcontacts are distributed randomly. The heat flow must pass through the macrocontact and then microcontacts to transfer from one body to another. This phenomenon leads to a relatively high temperature drop across the interface. Thermal contact resistance (TCR) is a complex interdisciplinary problem, which includes geometrical, mechanical, and thermal analyses. Each part includes a micro and a macro scale sub-problem. Analytical, experimental, and numerical models have been developed to predict TCR since the 1930's. Through comparison with more than 400 experimental data points, it is shown that the existing models are applicable only to the limiting cases and none of them covers the general non-conforming rough contact. The objective of this study is to develop a compact analytical model for predicting TCR for the entire range of non-conforming contacts, i. e. , from conforming rough to smooth sphere-flat in a vacuum. The contact mechanics of the joint must be known prior to solving the thermal problem. A new mechanical model is developed for spherical rough contacts. The deformation modes of the surface asperities and the bulk material of contacting bodies are assumed to be plastic and elastic, respectively. A closed set of governing relationships is derived. An algorithm and a computer code are developed to solve the relationships numerically. Applying Buckingham Pi theorem, the independent non-dimensional parameters that describe the contact problem are specified. A general pressure distribution is proposed that covers the entire spherical rough contacts, including the Hertzian smooth contact. Simple correlations are proposed for the general pressure distribution and the radius of the macrocontact area, as functions of the non-dimensional parameters. These correlations are compared with experimental data collected by others and good agreement is observed. Also a criterion is proposed to identify the flat surface, where the influence of surface curvature on the contact pressure is negligible. Thermal contact resistance is considered as the superposition of macro and micro thermal components. The flux tube geometry is chosen as the basic element in the thermal analysis of microcontacts. Simple expressions for determining TCR of non-conforming rough joints are derived which cover the entire range of TCR by using the general pressure distribution and the flux tube solution. A complete parametric study is performed; it is seen that there is a value of surface roughness that minimizes TCR. The thermal model is verified with more than 600 data points, collected by many researchers during the last 40 years, and good agreement is observed. A new approach is taken to study the thermal joint resistance. A novel model is developed for predicting the TCR of conforming rough contacts employing scale analysis methods. It is shown that the microcontacts can be modeled as heat sources on a half-space for engineering applications. The scale analysis model is extended to predict TCR over the entire range of non-conforming rough contacts by using the general pressure distribution developed in the mechanical model. It is shown that the surface curvature and contact pressure distribution have no effect on the effective micro thermal resistance. A new non-dimensional parameter is introduced as a criterion to identify the three regions of TCR, i. e. , the conforming rough, the smooth spherical, and the transition regions. An experimental program is designed and data points are collected for spherical rough contacts in a vacuum. The radius of curvature of the tested specimens are relatively large (in the order of m) and can not be seen by the naked eye. However, even at relatively large applied loads the measured joint resistance (the macro thermal component) is still large which shows the importance of surface out-of-flatness/curvature. Collected data are compared with the scale analysis model and excellent agreement is observed. The maximum relative difference between the model and the collected data is 6. 8 percent and the relative RMS difference is approximately 4 percent. Additionally, the proposed scale analysis model is compared/verified with more than 880 TCR data points collected by many researchers. These data cover a wide range of materials, surface characteristics, thermal and mechanical properties, mean joint temperature, directional heat transfer effect, and contact between dissimilar metals. The RMS difference between the model and all data is less than 13. 8 percent.
158

Effect of arterial blood perfusion pressure on vascular conductance and muscle blood flow at rest and exercise

Villar, Rodrigo January 2012 (has links)
The adaptations of vessel diameter represented by vascular conductance (VC), muscle blood flow (MBF) and oxygen delivery (DO2est) were investigated during rest and exercise using the effects of gravity to manipulate muscle perfusion pressure (MPP) by placing the heart above (head-up tilt) and below (head-down tilt) the level of the muscle. This experimental paradigm was used to explore VC and MBF regulation and related control mechanisms during rest and exercise. Study 1 tested the repeatability of Doppler ultra- sound measurements of muscle blood flow velocity (MBV), arterial diameter, MBF and VC. The adaptations in VC and MBF (Study 2) and changes in anterograde and retro- grade MBV patterns (Study 3) were investigated during postural challenges at rest. Study 4, determined the peak VC and its fractional recruitment during transitions from rest to lower (LPO) and higher power output (HPO) calf muscle exercise in HDT and HUT. Study 5 investigated the combined effects of altered MPP and hypoxia during exercise. During rest-HDT, increases in VC compensated for the MPP reduction to maintain MBF, while in rest-HUT, MBF was reduced. Following the start of LPO and HPO exercises, MBF and VC responses were delayed in HDT and accelerated in HUT. During LPO, MBF steady- state was reduced in HUT compared to horizontal (HOR), while the greater increase in VC during HDT maintained MBF at a similar level as HUT. Post-exercise MBF recovered rapidly in all positions after LPO exercise but did not after HPOHDT. During HPOHDT, MBF was reduced despite the increase in VC, while in HPOHUT MBF was similar to that in HPOHOR. The hypoxic challenge added in exercise was met during LPOHDT by in- creased VC to compensate reduced MPP and O2 availability such that MBF maintained DO2est. However, during HPOHDT in hypoxia, VC reached maximal vasodilatory capacity, compromising MBF and DO2est. Together, these findings indicate that LPOHDT in nor- moxia or hypoxia VC increased to maintain MBF and DO2est, but during HPO functional limitation for recruitment of VC constrained MBF and DO2 in normoxia and hypoxia. Elevated muscle electromyograpic signals in HPOHDT were consistent with challenged aer- obic metabolism. MPP reduction in HDT caused slower adaptation of MBF limiting O2 availability would result in a greater O2 deficit that could contribute to an increase in the relative stress of the exercise challenge and advance the onset of muscle fatigue.
159

Characterization and molecular mapping of drought tolerance in kabuli chickpea (<i>Cicer arietinum L.</i>)

Rehman, Aziz Ur 12 January 2009 (has links)
Abstract Drought is the most common abiotic stress limiting chickpea production in the world. Ninety percent of the worlds chickpea is produced in areas relying upon conserved, receding soil moisture, therefore, crop productivity is largely dependent on efficient utilization of available soil moisture. Because of the variability in drought pattern from year to year, trait based selection could have an advantage over selection on the basis of grain yield alone. Trait based breeding, however, requires trait dissection into components. Successful marker identification would facilitate integration of MAS procedures in breeding programs enabling the pyramiding of favourable alleles.<p> The genetic map produced in this study was based on a population of recombinant inbred lines of a cross of ILC 588 x ILC 3279 containing 52 SSR markers spanned 335 cM of the chickpea genome at an average density of 6.4 cM. A total of 13 genomic regions were shown to be associated with drought tolerance traits. Some of these genomic regions showed pleiotropic effect on multiple traits. This was also supported by the analysis of phenotypic data where these traits were found to be correlated. For example, early flowering and maturity had a strong association with high grain yield. High grain yield was also associated with better portioning ability between biomass and grain yield, i.e. harvest index. Drought tolerance score (DTS) was associated with various important traits including biomass, early flowering, early maturity.<p> This study also concluded that chickpea genotypes differed in terms of root length, root length density, root weight density and root length to weight ratio at every 20 cm soil layer up to 100 cm depth in response to water deficits. Consideration of an efficient root system vs. a larger root system is also important, since in this research, large root systems were offset by low harvest index, presumably due to the lack of assimilate available for grain growth. A restricted root system is important in environments like Western Canada, where crop growth termination is usually required prior to fall frost. This study also reported significant associations of stomatal conductance (gs) with each of HI, grain yield under drought, drought susceptibility index and drought tolerance score (DTS). Stomatal conductance can also be used to assess plant stress due to drought. Values of gs less than 250 mmol m-2s-1 during flowering indicated drought stress under greenhouse conditions. A higher degree of plant stress due to drought was shown by increased stomatal closure at midday (gs <150 mmol m-2s-1). The study of 157 RILs under natural drought stress during 2005-07 revealed that the 17 RILs which had high grain yield under drought (Group A), also tended to have higher gs than the 42 RILs that had lower grain yield (Group B). Group A had mean gs values of 390 mmol m-2s-1 during the week before flowering, while Group B had mean gs value of 330 mmol m-2s-1. Stomatal conductance increased at flowering and then sharply decreased later in the reproductive period, particularly in Group B. These findings were also supported by canopy temperature differential measurements as Group A was also able to maintain lower canopy temperature than Group B, indicating the ability of these plants to maintain adequate transpiration and a cooler canopy under drought stress. This research indicated that gs and canopy temperature can be used to assess chickpea drought stress and to screen drought tolerant genotypes. This study identified a QTL on LG7 for gs, QTLs on LG1, LG3 and LG6 associated with canopy temperature differential, as well as QTLs associated with grain yield under drought, HI, DTS, days to flower, days to maturity, reproductive period and plant height. These QTLs identified for traits related to higher chickpea productivity under drought stress could have important implications for accelerating the process of pyramiding of favourable genes into adapted genotypes and on future marker-assisted breeding for drought prone areas.
160

Spin Polarization and Conductance in Quantum Wires under External Bias Potentials

Lind, Hans January 2010 (has links)
We study the spin polarization and conductance in infinitely long quasi one-dimensionalquantum wires under various conditions in an attempt to reproduce and to explain some of theanomalous conductance features as seen in various experiments. In order to accomplish thistask we create an idealized model of a quantum wire in a split-gate semiconductorheterostructure and we perform self-consistent Hartree-Fock calculations to determine theelectron occupation and spin polarization. Based on those results we calculate the currentthrough the wire as well as the direct and differential conductances. In the frame of theproposed model the results show a high degree of similarity to some of the experimentallyobserved conductance features, particularly the 0.25- and 0.85-plateaus. These results lead usto the conclusion that those conductance anomalies are in fact caused by the electronsspontaneously polarizing due to electron-electron interactions when an applied potentialdrives a current through the wire.

Page generated in 0.2199 seconds