Spelling suggestions: "subject:"oscillations theta"" "subject:"scillations theta""
1 |
Modulations physiologiques et comportementales de la douleur socialeCristofori, Irène 09 September 2011 (has links) (PDF)
La douleur sociale est une forme de douleur non physique dérivant de la perception de l'exclusion sociale. L'importance de la compréhension de ses modulations comportementales et neuronales est fondamentale, car ses conséquences sur le long terme peuvent être très néfastes. Dans ce travail de thèse, j'ai exploré ces aspects à travers une étude comportementale à l‟aide d‟enregistrements par SCR (Skin Conductance Recording), et trois études en iEEG (électro-encéphalographie intracrânienne) chez des patients épileptiques. La première étude comportementale a exploré la direction dans laquelle l'exclusion sociale est influencée par une récompense et ses réactions sur le long terme. Ainsi, la récompense monétaire altère l'équilibre social et augmente l‟activité électrodermale. La personne ayant été exclue met alors en oeuvre des mécanismes de vengeance en défavorisant la personne qui l‟a exclue précédemment. Les études en iEEG ont été une fenêtre unique d'exploration du cerveau lors de différentes types de modulation de l'exclusion. Dans la première étude en iEEG, nous avons observé que la douleur sociale produit une activation des oscillations thêta (3-7 Hz), lors de d'exclusion, dans l'insula, l'ACC, le cortex préfrontal et le gyrus fusiforme. La deuxième étude iEEG s'est intéressée aux modulations produites par la douleur sociale dans BA 19 et BA 17 présentant des P1 d'amplitude majeure lors de l'observation des photos du joueur qui exclut. La troisième étude en iEEG a exploré la réponse neuronale de l'influence d'une variable monétaire lors de l'exclusion. Nos résultats démontrent que l'insula postérieure présente une activation thêta indépendante du fait que l'exclusion soit positive (exclusion et gain d'argent) ou encore négative (exclusion et perte d'argent), à la différence de l'insula antérieure, active seulement lors d'une exclusion négative
|
2 |
Modulations physiologiques et comportementales de la douleur sociale / Physiological and behavioral modulation of the social painCristofori, Irène 09 September 2011 (has links)
La douleur sociale est une forme de douleur non physique dérivant de la perception de l'exclusion sociale. L'importance de la compréhension de ses modulations comportementales et neuronales est fondamentale, car ses conséquences sur le long terme peuvent être très néfastes. Dans ce travail de thèse, j'ai exploré ces aspects à travers une étude comportementale à l‟aide d‟enregistrements par SCR (Skin Conductance Recording), et trois études en iEEG (électro-encéphalographie intracrânienne) chez des patients épileptiques. La première étude comportementale a exploré la direction dans laquelle l'exclusion sociale est influencée par une récompense et ses réactions sur le long terme. Ainsi, la récompense monétaire altère l'équilibre social et augmente l‟activité électrodermale. La personne ayant été exclue met alors en oeuvre des mécanismes de vengeance en défavorisant la personne qui l‟a exclue précédemment. Les études en iEEG ont été une fenêtre unique d'exploration du cerveau lors de différentes types de modulation de l'exclusion. Dans la première étude en iEEG, nous avons observé que la douleur sociale produit une activation des oscillations thêta (3-7 Hz), lors de d'exclusion, dans l'insula, l'ACC, le cortex préfrontal et le gyrus fusiforme. La deuxième étude iEEG s'est intéressée aux modulations produites par la douleur sociale dans BA 19 et BA 17 présentant des P1 d'amplitude majeure lors de l'observation des photos du joueur qui exclut. La troisième étude en iEEG a exploré la réponse neuronale de l'influence d'une variable monétaire lors de l'exclusion. Nos résultats démontrent que l'insula postérieure présente une activation thêta indépendante du fait que l'exclusion soit positive (exclusion et gain d'argent) ou encore négative (exclusion et perte d'argent), à la différence de l'insula antérieure, active seulement lors d'une exclusion négative / Pain is a form of social non-physical pain arising from the perception of social exclusion. The importance of understanding its behavioral and neuronal modulations has a critical value, since its long lasting consequences can be extremely harmful. In this thesis I firstly explored these issues through a behavioral SCR study (Skin Conductance Recording), and successively through three iEEG studies in patients with epilepsy (intracranial EEG). The SCR study explored the direction in which social exclusion is influenced by a reward and its long lasting reactions. Money affects social equilibrium and increases the SCR pics. The excluded individual implements revenge attitudes toward the person who excluded in a previuous interaction. The iEEG studies were a unique window for exploring the brain during different types of social pain modulations. In the first iEEG study, we found that social pain produced activation of theta oscillations (3-7 Hz) during exclusion in the insula, in the ACC, in the prefrontal cortex and in the fusiform face area. The second iEEG study wanted to explore deeply the primitive modulations produced by social pain in visual area. We found in BA 19 and BA 17 greater P1 peak amplitude during excluder pictures presentation. The third iEEG study investigated the neuronal modulations produced by a monetary reward during social pain. These results demonstrated that the posterior insula has a theta activation independent of whether the exclusion is positive (excluded but gaining money) or more negative (excluded but losing money), whereas the anterior insula, has a theta activation only during a negative exclusion
|
3 |
Role of cortical parvalbumin interneurons in fear behaviour / Rôle des interneurones corticaux parvalbuminergiques dans les comportements de peurCourtin, Julien 13 December 2013 (has links)
Les processus d'apprentissage et de mémoire sont contrôlés par des circuits et éléments neuronaux spécifiques. De nombreuses études ont récemment mis en évidence que les circuits corticaux jouent un rôle important dans la régulation des comportements de peur, cependant, leurs caractéristiques anatomiques et fonctionnelles restent encore largement inconnues. Au cours de ma thèse, en utilisant des enregistrements unitaires et des approches optogénétiques chez la souris libre de se comporter, nous avons pu montrer que les interneurones inhibiteurs du cortex auditif et du cortex préfrontal médian forment un microcircuit désinhibiteur permettant respectivement l'acquisition et l'expression de la mémoire de peur conditionnée. Dans les deux cas, les interneurones parvalbuminergiques constituent l'élément central du circuit et sont inhibés de façon phasique. D’un point de vue fonctionnel, nous avons démontré que cette inhibition était associée à la désinhibition des neurones pyramidaux par un mécanisme de réduction de l'inhibition continue exercée par les interneurones parvalbuminergiques. Ainsi, les interneurones parvalbuminergiques peuvent contrôler temporellement l'excitabilité des neurones pyramidaux. En particulier, nous avons montré que l'acquisition de la mémoire de peur conditionnée dépend du recrutement d'un microcircuit désinhibiteur localisé dans le cortex auditif. En effet, au cours du conditionnement de peur, la présentation du choc électrique induit l'inhibition des interneurones parvalbuminergiques, ce qui a pour conséquence de désinhiber les neurones pyramidaux du cortex auditif et de permettre l’apprentissage du conditionnement de peur. Dans leur ensemble, ces données suggèrent que la désinhibition est un mécanisme important dans l'apprentissage et le traitement de l'information dans les circuits corticaux. Dans un second temps, nous avons montré que l'expression de la peur conditionnée requière l'inhibition phasique des interneurones parvalbuminergiques du cortex préfrontal médian. En effet, leur inhibition désinhibe les cellules pyramidales préfrontales et synchronise leur activité en réinitialisant les oscillations thêta locales. Ces résultats mettent en évidence deux mécanismes neuronaux complémentaires induits par les interneurones parvalbuminergiques qui coordonnent et organisent avec précision l’activité neuronale des neurones pyramidaux du cortex préfrontal pour contrôler l'expression de la peur conditionnée. Ensemble, nos données montrent que la désinhibition joue un rôle important dans les comportements de peur en permettant l’association entre des informations comportementalement pertinentes, en sélectionnant les éléments spécifiques du circuit et en orchestrant l'activité neuronale des cellules pyramidales. / Learning and memory processes are controlled by specific neuronal circuits and elements. Numerous recent reports highlighted the important role of cortical circuits in the regulation of fear behaviour, however, the anatomical and functional characteristics of their neuronal components remain largely unknown. During my thesis, we used single unit recordings and optogenetic manipulations of specific neuronal elements in behaving mice, to show that both the auditory cortex and the medial prefrontal cortex contain a disinhibitory microcircuit required respectively for the acquisition and the expression of conditioned fear memory. In both cases, parvalbumin-expressing interneurons constitute the central element of the circuit and are phasically inhibited during the presentation of the conditioned tone. From a functional point of view, we demonstrated that this inhibition induced the disinhibition of cortical pyramidal neurons by releasing the ongoing perisomatic inhibition mediated by parvalbumin-expressing interneurons onto pyramidal neurons. Thereby, this disinhibition allows the precise temporal regulation of pyramidal neurons excitability. In particular, we showed that the acquisition of associative fear memories depend on the recruitment of a disinhibitory microcircuit in the auditory cortex. Fear-conditioning-associated disinhibition in auditory cortex is driven by foot-shock-mediated inhibition of parvalbumin-expressing interneurons. Importantly, pharmacological or optogenetic blockade of pyramidal neuron disinhibition abolishes fear learning. Together, these data suggest that disinhibition is an important mechanism underlying learning and information processing in cortical circuits. Secondly, in the medial prefrontal cortex, we demonstrated that expression of fear behaviour is causally related to the phasic inhibition of prefrontal parvalbumin-expressing interneurons. Inhibition of parvalbumin-expressing interneuron activity disinhibits prefrontal pyramidal neurons and synchronizes their firing by resetting local theta oscillations, leading to fear expression. These results identify two complementary neuronal mechanisms both mediated by prefrontal parvalbumin-expressing interneurons that precisely coordinate and enhance the neuronal efficiency of prefrontal pyramidal neurons to drive fear expression. Together these data highlighted the important role played by neuronal disinhibition in fear behaviour by binding behavioural relevant information, selecting specific circuit elements and orchestrating pyramidal neurons activity.
|
4 |
Importance des modifications de flairage dans l’acquisition d’une tâche de discrimination olfactive : approche comportementale et corrélats neuronaux / Significance of sniffing adjustments during the acquisition of an olfactory discrimination task : behavioral approach and neural correlatesLefevre, Laura 16 December 2016 (has links)
Les modalités sensorielles ont un rôle essentiel dans la collecte des informations en provenance de l’environnement. En olfaction, l’échantillonnage actif des odeurs se fait via le flairage chez le rat (2-10 Hz). Chez l’animal qui se comporte, le flairage est un acte très dynamique, il varie en particulier en fréquence et en débit. Le flairage peut être modulé par des facteurs liés au stimulus, comme les propriétés physico-chimiques des odeurs ou leur concentration, ou par des facteurs plus « internes » comme l’attention, les émotions ou la motivation. Plusieurs auteurs ont également suggéré l’importance de la fréquence de flairage dans la performance. Dans une première partie de ma thèse, j’ai voulu caractériser l’impact d’un apprentissage olfactif sur la mise en place d’un pattern de flairage adapté à la discrimination. Pour cela, j’ai utilisé un système d’enregistrement de la respiration non invasif chez le rat (pléthysmographe) pendant que l’animal effectue une tâche de discrimination olfactive à double choix. Dans une seconde partie, j’ai cherché les corrélats neuronaux de l’acquisition de ce pattern de flairage en enregistrant simultanément l’activité respiratoire et les signaux neuronaux (potentiels de champ locaux) dans des aires olfactives, motrices et limbiques chez l’animal en comportement. J’ai cherché à caractériser les activités oscillatoires dans la bande bêta (15-30 Hz) et thêta (2-10 Hz). J’ai enfin discuté dans quelle mesure celles-ci pouvaient être reliées à l’apprentissage et/ou aux variations de l’activité respiratoire / Sensory modalities actively take part in collecting relevant information from the environment. In olfaction, active sampling amounts to sniffing in rodents (2-10 Hz). In behaving animals, sniffing is highly dynamic, notably in frequency and flow rate. Sniffing can be modulated by parameters related to the odorant stimulus, such as the physicochemical properties of the molecule or its concentration. It can also vary depending on “internal” parameters such as attention, emotions or motivation. Several studies highlighted the importance of the sniffing frequency in performance. First, I looked at the impact of olfactory learning on the acquisition of a specific sniffing pattern. For that purpose, I monitored sniffing activity in a non-invasive way, using a whole-body plethysmograph, on rats performing a two-alternative choice odor discrimination task. Second, I looked for neuronal correlates of the acquisition of such a sniffing pattern by simultaneously recording sniffing and neuronal activities (local field potentials) in olfactory, motor and limbic areas in behaving animals. I sought to characterize oscillatory activities in beta (15-30 Hz) and theta (2-10 Hz) ranges. I finally discussed to what extent they were related to learning and/or sniffing modulations
|
5 |
Voluntary control of neural oscillations in the human brain / Contrôle volontaire des oscillations neuronales dans le cerveau humainCorlier-Bagdasaryan, Juliana 08 December 2015 (has links)
Introduction. Les animaux et les humains sont capables de moduler leur propre activité cérébrale, pourvu que leur soit donné un retour sensoriel en temps-réel de celle-ci. La gamme des activités contrôlables s’étend des rythmes oscillatoires, à la réponse hémodynamique , au taux de décharge des neurones ou même au signal calcique associé aux potentiels d’action. Le contrôle volontaire des activités neuronales, facilité par le plan expérimental d’un paradigme en boucle fermée, est au cœur de l’interaction corps-esprit et peut être utilisé pour adresser des questions philosophiques. Mais comme de nombreuses études l’ont démontré, les interfaces homme-machine sont aussi un outil puissant dans la réhabilitation motrice, la gestion de la douleur, la régulation des émotions, ou encore l’amélioration de la mémoire. Étant donné que la plupart des études a été conduite sur les sujets humains avec des techniques non-invasives, les mécanismes neurophysiologiques de l’autorégulation neuronale sont restés mal connus. L’objectif principal de ce travail était donc d’élaborer une description des principes physiologiques sous-tendant cette technique.Objectifs. D’après la théorie des oscillations neuronales à des multiples niveaux, la présente enquête était principalement définie par les questions suivantes : 1) Quels sont les marqueurs physiologiques du contrôle volontaire des activités neuronales? 2) Existe t-il des échelles spatiotemporelle plus facilement modulables que d’autres? 3) Les effets de l’entrainement sont –ils spécifiques ou généralisables en espace et fréquence ? et 4) Quelles sont les stratégies cognitives efficace pour contrôler les activités oscillatoires parmi plusieurs sujets ? Pour adresser ces questions, dans mon travail j’ai utilisé les enregistrements intracérébraux avec des macro- et micro-électrodes chez les patients épileptiques dans le cadre d’un bilan pré-chirurgical. / Introduction. Animals and humans are capable to modulate their own brain activity if they are provided with real-time sensory feedback thereof. The range of controllable neural activities reaches from oscillatory brain rhythms, over hemodynamic response function to the firing of single neurons or even action-potential associated calcium signals. The voluntary control of neural activity facilitated by this ‘closed-loop’ experimental paradigm is at the very heart of the mind-body interaction and can be used to address philosophical questions. But as numerous successful applications of neurofeedback and brain-computer interfaces have demonstrated, it is also a powerful tool in motor rehabilitation, pain management, emotion regulation or memory improvement. Because most previous studies were conducted on humans using non-invasive recordings techniques, the neurophysiological mechanisms of neural self-regulation remained obscure. The main objective of the present work was thus to provide a better understanding of its underlying principles. Objectives. Following a multiscale theoretical framework of neural oscillations, the present investigation was largely guided by the following questions: 1) What are the physiological markers of successful control? 2) Are some regions or spatiotemporal scales more easily controllable than others? 3) Are training effects specific or generalized? and 4) What are subject-invariant successful cognitive strategies of neural self-control? To address these questions, we took advantage of intracerebral macro- and micro-electrode recordings in epileptic patients undergoing long-term monitoring in the presurgical context.
|
Page generated in 0.1099 seconds