• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 10
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development of a Machine to Control the Level of Washing in Panca Chili Seeds

De La Cruz, Anthony, Cardenas, Jaime, Vinces, Leonardo 01 January 2021 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / The washing of Panca chili seeds requires innovative solutions that allow controlling this process. It is necessary to handle variables (conductivity, pH, colorimetry) in the face of the challenge of working with small seeds. At present, there are no machines that are dedicated to the washing of this type of seeds, since in many companies this work is done manually, which is not the one indicated because this technique cannot guarantee homogeneity in the seed washing. In addition, direct handling of this type of seeds can cause irritation to the eyes and skin of the person who maintains contact with the seeds. That is why, it is proposed to make a machine to scale by means of a motorized rotary agitator inside a tank, in order to guarantee the homogeneity of the mixture when washing seeds. The present work will allow to determine, among two different types of agitators (axial and radial), which type of agitator is the most efficient in the washing of seeds of Panca chili, to achieve this objective the measurement of pH and electrical conductivity to the water will be carried after the mixture, after stirring. Finally, the analysis of the tests performed on the mixture obtained and washed by each type of agitator allowed to identify the turbine-type radial agitator, like the one that obtained greater efficiency in the washing of seeds, with respect to the helical agitator and pallets, designed for development of this work, in turn, could also confirm that this type of palette with the conductivity control allows to guarantee the homogeneity of the mixture during washing. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG. / Revisión por pares
12

Fabrication and characterisation of carbon-based devices

Thuau, Damien January 2012 (has links)
Thin film material properties and measurement characterisation techniques are crucial for the development of micro-electromechanical systems (MEMS) devices. Furthermore, as the technology scales down from microtechnology towards nanotechnology, nanoscale materials such as carbon nanotubes (CNTs) are required in electronic devices to overcome the limitations encountered by conventional materials at the nanoscale. The integration of CNTs into micro-electronics and material applications is expected to provide a wide range of new applications. The work presented in this thesis has contributed to the development of thin film material characterisation through research on the thermal conductivity measurement and the control of the residual stress of thin film materials used commonly in MEMS devices. In addition, the use of CNTs in micro-electronics and as filler reinforcement in composite materials applications have been investigated, leading to low resistivity CNTs interconnects and CNTs-Polyimide (PI) composites based resistive humidity sensors. In the first part of this thesis, the thermal conductivity of conductive thin films as well as the control of the residual stress arising from fabrication process in PI micro-cantilevers have been studied. A MEMS device has been developed for the thermal conductivity characterisation of conductive thin films showing good agreement with thermal conductivity of bulk material. Low energy Ar+ ion bombardment in a plasma has been used to control the residual stress present in PI cantilevers. Appropriate ion energy and exposure time have led to stress relaxation of the beams resulting in a straight PI cantilever beam. In the second part of this thesis, low resistivity CNTs interconnects have been developed using both dielectrophoresis (DEP) and Focused Ion Beam (FIB) techniques. An investigation of the effects of CNT concentration, applied voltage and frequency on the CNTs alignment between Al and Ti electrodes has resulted in the lowering of the CNTs’ resistance. The deposition of Pt contact using FIB at the CNTs-metal electrodes interface has been found to decrease the high contact resistances of the devices by four and two orders of magnitude for Al and Ti electrodes respectively. The last part of this thesis focuses on the preparation of CNTs-PI composite materials, its characterisation and its application as resistive humidity sensor. The integration of CNTs inside the PI matrix has resulted in enhancing significantly the electrical and mechanical properties of the composites. In particular, a DEP technique employed to induce CNTs alignment inside the PI matrix during curing has been attributed to play an important role in improving the composite properties and lowering the percolation threshold. In addition, the fabrication and testing of CNTs-PI resistive humidity sensors have been carried out. The sensing performance of the devices have shown to be dependent highly on the CNT concentration. Finally, the alignment of CNTs by DEP has improved the sensing properties of CNTs-PI humidity sensors and confirmed that the change of resistance in response to humidity is governed by the change of the CNTs’ resistances due to charge transfer from the water molecules to the CNTs.
13

Desenvolvimento de transdutor em fibra óptica com estrutura hí­brida LPG-FBG para medição de propriedades térmicas de materiais. / Development of fiber-optic transducer based on LPG-FBG hybrid structure to measurement of thermal properties of materials.

Silva, Gleison Elias da 05 December 2017 (has links)
Este trabalho apresenta o estudo, a implementação e a caracterização de transdutores compostos por uma estrutura formada por grades de Bragg (FBG, Fiber Bragg Gratings) e grades de período longo (LPG, Long Period Gratings) em fibra óptica com cobertura metálica autoaquecida para medição da condutividade térmica e da difusividade térmica de materiais baseado no método do fio quente (HWM, Hot-Wire Method) convencional. O autoaquecimento da fibra óptica do dispositivo desenvolvido neste trabalho é provocado pela luz de espectro infravermelho injetada por um laser de bombeamento, que é espalhada por uma LPG e absorvida por um filme fino metálico depositado na superfície da fibra. Os transdutores apresentados são compactos, simples, robustos e imunes a interferências eletromagnéticas. O arranjo experimental utilizando o dispositivo híbrido LPG-FBG foi capaz de medir as condutividades térmicas do ar atmosférico e da água comum com precisões de 27% e 14%, respectivamente. Foram identificados vários fatores que afetam a precisão e a exatidão das medidas realizadas, sendo propostas diversas formas de correções de modo a melhorar o desempenho do arranjo. Foi demonstrada com sucesso a viabilidade da aplicação original do arranjo experimental utilizando o dispositivo híbrido LPG-FBG em fibra óptica autoaquecida para a medição de propriedades térmicas de fluidos (ar e água). / This work presents the study, implementation, and characterization of transducers composed of a structure formed by Fiber Bragg Gratings (FBG) and Long Period Gratings (LPG) in optical fiber with self-heating coverage for measurement of thermal conductivity and thermal diffusivity of materials based on the Hot-Wire Method (HWM). The self-heating fiber optic device developed in this work is caused by the light of infrared spectrum injected by a pumping laser, which is spread by an LPG and absorbed by a thin metallic film deposited on the surface of the fiber. The transducers are compact, simple, robust and immune to electromagnetic interference. The experimental arrangement using the optical fiber sensor based on LPG-FBG hybrid structure was able to measure the thermal conductivity of atmospheric air and water with accuracies of 27% and 14%, respectively. Several factors were identified that affect the precision and the accuracy of the measures carried out, whereby various forms of corrections are being proposed to improve overall performance. The viability of the original application of the experimental arrangement using the LPG-FBG hybrid device in self-heating optical fiber for the measurement of thermal properties of fluids (air and water) has been successfully demonstrated.
14

Desenvolvimento de transdutor em fibra óptica com estrutura hí­brida LPG-FBG para medição de propriedades térmicas de materiais. / Development of fiber-optic transducer based on LPG-FBG hybrid structure to measurement of thermal properties of materials.

Gleison Elias da Silva 05 December 2017 (has links)
Este trabalho apresenta o estudo, a implementação e a caracterização de transdutores compostos por uma estrutura formada por grades de Bragg (FBG, Fiber Bragg Gratings) e grades de período longo (LPG, Long Period Gratings) em fibra óptica com cobertura metálica autoaquecida para medição da condutividade térmica e da difusividade térmica de materiais baseado no método do fio quente (HWM, Hot-Wire Method) convencional. O autoaquecimento da fibra óptica do dispositivo desenvolvido neste trabalho é provocado pela luz de espectro infravermelho injetada por um laser de bombeamento, que é espalhada por uma LPG e absorvida por um filme fino metálico depositado na superfície da fibra. Os transdutores apresentados são compactos, simples, robustos e imunes a interferências eletromagnéticas. O arranjo experimental utilizando o dispositivo híbrido LPG-FBG foi capaz de medir as condutividades térmicas do ar atmosférico e da água comum com precisões de 27% e 14%, respectivamente. Foram identificados vários fatores que afetam a precisão e a exatidão das medidas realizadas, sendo propostas diversas formas de correções de modo a melhorar o desempenho do arranjo. Foi demonstrada com sucesso a viabilidade da aplicação original do arranjo experimental utilizando o dispositivo híbrido LPG-FBG em fibra óptica autoaquecida para a medição de propriedades térmicas de fluidos (ar e água). / This work presents the study, implementation, and characterization of transducers composed of a structure formed by Fiber Bragg Gratings (FBG) and Long Period Gratings (LPG) in optical fiber with self-heating coverage for measurement of thermal conductivity and thermal diffusivity of materials based on the Hot-Wire Method (HWM). The self-heating fiber optic device developed in this work is caused by the light of infrared spectrum injected by a pumping laser, which is spread by an LPG and absorbed by a thin metallic film deposited on the surface of the fiber. The transducers are compact, simple, robust and immune to electromagnetic interference. The experimental arrangement using the optical fiber sensor based on LPG-FBG hybrid structure was able to measure the thermal conductivity of atmospheric air and water with accuracies of 27% and 14%, respectively. Several factors were identified that affect the precision and the accuracy of the measures carried out, whereby various forms of corrections are being proposed to improve overall performance. The viability of the original application of the experimental arrangement using the LPG-FBG hybrid device in self-heating optical fiber for the measurement of thermal properties of fluids (air and water) has been successfully demonstrated.
15

Versuchsanlage ROCOM zur Untersuchung der Kühlmittelvermischung in Druckwasserreaktoren - Ergebnisse quasistationärer Vermischungsexperimente

Grunwald, G., Kliem, S., Höhne, T., Rohde, U., Prasser, H.-M., Richter, K.-H., Weiß, F.-P. 31 March 2010 (has links) (PDF)
The test facility ROCOM (Rossendorf Coolant Mixing Model) has been built for the investigation of coolant mixing processes in the reactor pressure vessel of pressurised water reactors (PWR). ROCOM is a 1:5 model of the German PWR KONVOI and has been designed for a wide range of different mixing scenarios. ROCOM disposes of four loops with fully controllable coolant pumps. The test facility is operated with demineralised water. For the investigation of mixing, tracer solution (water labelled with salt) is injected into the facility. The transient distribution of the electrical conductivity is is measured at different positions of the flow path by means of wire-mesh sensor technique with high resolution in space and time. The measured conductivity is transformed into a dimensionless mixing scalar. The mixing at quasi-stationary conditions (constant loop mass flow rates) has been investigated in the presented experiments. That concerned nominal operation conditions, the operation with a reduced number of loops and the investigation of cold-water transients with running pumps and conditions of developed natural circulation. In special experimental series, the reproducibility of the results at identicla boundary conditions within the confidence intervalls has been shown. Further, the influence of various factors on the mixing has been investigated. This included the pressure losses at the core bottom plate, the global coolant flow level and the influence of the loop flow rate on the perturbed sector at the core inlet. An analysis of the measurement error of the used measurement technique completes the report.
16

Uma abordagem bayesiana para estudo estatístico e geoestatístico de estimativas de salindade do solo utilizando sensor de indução eletromagnética / A boarding bayesiana for statistical study and geoestaistic of estimates of salinity of the ground using sensory of electromagnetic induction

PESSOA, Antônio Lopes 24 February 2006 (has links)
Submitted by (ana.araujo@ufrpe.br) on 2016-05-20T15:59:30Z No. of bitstreams: 1 Antonio Lopes Pesoa.pdf: 686455 bytes, checksum: 89c64469a23f829cb322108723a916c9 (MD5) / Made available in DSpace on 2016-05-20T15:59:30Z (GMT). No. of bitstreams: 1 Antonio Lopes Pesoa.pdf: 686455 bytes, checksum: 89c64469a23f829cb322108723a916c9 (MD5) Previous issue date: 2006-02-24 / This study analyzed the existing relationship among measurements of soil apparent electrical conductivity in an alluvial valley in the Agreste region of Pernambuco State and its spatial variability in the subsurface. The soil apparent electric conductivity was investigated through an electromagnetic induction EM 38 equipment. The readings have been carried out both in the vertical and horizontal modes. The measurements have been analyzed through the classic descriptive statistics as well as geostatistics and bayesian approach. The statistical analyses had shown that the data of apparent electric conductivity had adjusted to a normal distribution, presenting a high space variability for the horizontal mode and an average space variability for the way of vertical operation. In order to allow the use of the geostatistical methodology, the experimental semivariogram was constructed, and fitted to a theoretical model. Considering the spatial dependence mapping of the salinized areas have been performed. The best theoretical models for the vertical mode and for the horizontal operation were the gaussian model and the exponential model, through the crossed validation and using the Akaike’s Information Criterion .The bayesian approach focused the spatial predictionrelating the method of the maximum likelihood with the functions of prioris distributions for each parameter, considering the uncertainty associated to each one of these distributions. It was verified that the adjusted semivariograms had not presented significant differences in the validation of the geostatistics methodology and in the bayesian approach. / Esta dissertação analisou a relação existente entre medidas de condutividade elétrica aparente de um solo aluvial da região Agreste do Estado de Pernambuco,e a sua variabilidade espacial na camada subsuperficial. A condutividade elétrica aparente do solo foi investigada através de equipamento de indução eletromagnética EM 38. As leituras efetuadas com o EM 38 foram tanto no modo vertical como no modo horizontal. As medidas obtidas em campo foram analisadas através da estatística descritiva clássica, bem como através das metodologias geoestatística e abordagem bayesiana. As análises estatísticas mostraram que os dados de condutividade elétrica aparente se ajustaram a uma distribuição normal a apresentaram uma alta variabilidade espacial para o modo de operação horizontal e uma média variabilidade espacial para o modo de operação vertical. Através da metodologia geoestatística foi construído o semivariograma experimental que, posteriormente, foi ajustado a um modelo teórico. O melhor ajuste de modelo teórico foi obtido, tanto para o modo de operação vertical como para o modo de operação horizontal, para o modelo gaussiano e para o modelo exponencial, efetuada através da validação cruzada edo Critério de Informação de Akaike. A partir da dependência espacial, foi elaborado o mapeamento das áreas salinizadas. A abordagem bayesiana focalizou a predição espacial, relacionando o método da máxima verossimilhança com as funções de distribuições prioris de cada parâmetro, considerando o grau de incerteza associado a cada uma dessas distribuições. Verificou-se que os semivariogramas ajustados não apresentaram diferenças significativas na validação da metodologia geoestatística e na abordagem bayesiana.
17

Versuchsanlage ROCOM zur Untersuchung der Kühlmittelvermischung in Druckwasserreaktoren - Ergebnisse quasistationärer Vermischungsexperimente

Grunwald, G., Kliem, S., Höhne, T., Rohde, U., Prasser, H.-M., Richter, K.-H., Weiß, F.-P. January 2002 (has links)
The test facility ROCOM (Rossendorf Coolant Mixing Model) has been built for the investigation of coolant mixing processes in the reactor pressure vessel of pressurised water reactors (PWR). ROCOM is a 1:5 model of the German PWR KONVOI and has been designed for a wide range of different mixing scenarios. ROCOM disposes of four loops with fully controllable coolant pumps. The test facility is operated with demineralised water. For the investigation of mixing, tracer solution (water labelled with salt) is injected into the facility. The transient distribution of the electrical conductivity is is measured at different positions of the flow path by means of wire-mesh sensor technique with high resolution in space and time. The measured conductivity is transformed into a dimensionless mixing scalar. The mixing at quasi-stationary conditions (constant loop mass flow rates) has been investigated in the presented experiments. That concerned nominal operation conditions, the operation with a reduced number of loops and the investigation of cold-water transients with running pumps and conditions of developed natural circulation. In special experimental series, the reproducibility of the results at identicla boundary conditions within the confidence intervalls has been shown. Further, the influence of various factors on the mixing has been investigated. This included the pressure losses at the core bottom plate, the global coolant flow level and the influence of the loop flow rate on the perturbed sector at the core inlet. An analysis of the measurement error of the used measurement technique completes the report.
18

THERMAL IMAGING AS A TOOL FOR ASSESSING THE RELIABILITY, HEAT TRANSPORT, AND MATERIAL PROPERTIES OF MICRO TO NANO-SCALE DEVICESE

Sami Alajlouni (12446577) 22 April 2022 (has links)
<p>  We utilize thermoreflectance (TR) thermal imaging to experimentally study heat transport and reliability of micro to nano-scale devices. TR imaging provides 2D thermal maps with sub-micron spatial resolution. Fast thermal transients down to 50 ns resolution can be captured. In addition, finite element modeling is carried out to better understand the underlying physics of the experiment. We describe four main applications; 1) Development of a full-field thermoreflectance imaging setup with a variable optical (laser) heating source as a general characterization tool. We demonstrate the setup’s sensitivity to extract anisotropic<br> thermal conductivity of thin flms and evaluate its sensitivity for detecting buried (below the surface) defects in 3D integrated circuits. This method provides a low-cost noncontact alternative to destructive defect localization methods. It also doesn’t require any special sample<br> preparations. 2) Physics of localized electromigration-failures in metallic interconnects is investigated. One can distinguish two separate mechanisms responsible for electromigration depending on the current density and temperature gradient. 3) Thermal transport in silicon near sub-micron electrical heaters is studied. Quasiballistic and hydrodynamic (fluid-like) behavior is observed at room temperature for different device sizes and geometries. 4) Temperature-dependent thermoreflectance coefcient of phase-change materials is characterized. We focus on tungsten (W) doped VO<sub>2</sub> (W<sub>0.02</sub>V<sub>0.98</sub>O<sub>2</sub>) compound, which experiences an insulator-to-metal transition (IMT) at ≈33 °C. Strong TR-signal non-linearity is observed at the IMT temperature. This non-linearity is used to localize the phase-change boundary with resolutions down to ≈0.2 µm. TR full-feld imaging enables a simple and fast characterization complementing near-feld microscopy techniques. <br>  </p>

Page generated in 0.1124 seconds