• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the steady-state flow of an elastic-plastic material past cones and wedges

Taskinen, Timo I. January 1999 (has links)
No description available.
2

Development of a Performance-Based Procedure to Predict Liquefaction-Induced Free-Field Settlements for the Cone Penetration Test

Hatch, Mikayla Son 01 June 2017 (has links)
Liquefaction-induced settlements can cause a large economic toll on a region, from severe infrastructural damage, after an earthquake occurs. The ability to predict, and design for, these settlements is crucial to prevent extensive damage. However, the inherent uncertainty involved in predicting seismic events and hazards makes calculating accurate settlement estimations difficult. Currently there are several seismic hazard analysis methods, however, the performance-based earthquake engineering (PBEE) method is becoming the most promising. The PBEE framework was presented by the Pacific Earthquake Engineering Research (PEER) Center. The PEER PBEE framework is a more comprehensive seismic analysis than any past seismic hazard analysis methods because it thoroughly incorporates probability theory into all aspects of post-liquefaction settlement estimation. One settlement estimation method, used with two liquefaction triggering methods, is incorporated into the PEER framework to create a new PBEE (i.e., fully-probabilistic) post-liquefaction estimation procedure for the cone penetration test (CPT). A seismic hazard analysis tool, called CPTLiquefY, was created for this study to perform the probabilistic calculations mentioned above. Liquefaction-induced settlement predictions are computed for current design methods and the created fully-probabilistic procedure for 20 CPT files at 10 cities of varying levels of seismicity. A comparison of these results indicate that conventional design methods are adequate for areas of low seismicity and low seismic events, but may significantly under-predict seismic hazard for areas and earthquake events of mid to high seismicity.
3

Development of a Performance-Based Procedure for Assessment of Liquefaction-Induced Lateral Spread Displacements Using the Cone Penetration Test

Coutu, Tyler Blaine 01 October 2017 (has links)
Liquefaction-induced lateral spread displacements cause severe damage to infrastructure, resulting in large economic losses in affected regions. Predicting lateral spread displacements is an important aspect in any seismic analysis and design, and many different methods have been developed to accurately estimate these displacements. However, the inherent uncertainty in predicting seismic events, including the extent of liquefaction and its effects, makes it difficult to accurately estimate lateral spread displacements. Current conventional methods of predicting lateral spread displacements do not completely account for uncertainty, unlike a performance-based earthquake engineering (PBEE) approach that accounts for the all inherent uncertainty in seismic design. The PBEE approach incorporates complex probability theory throughout all aspects of estimating liquefaction-induced lateral spread displacements. A new fully-probabilistic PBEE method, based on results from the cone penetration test (CPT), was created for estimating lateral spread displacements using two different liquefaction triggering procedures. To accommodate the complexity of all probabilistic calculations, a new seismic hazard analysis tool, CPTLiquefY, was developed. Calculated lateral spread displacements using the new fully-probabilistic method were compared to estimated displacements using conventional methods. These comparisons were performed across 20 different CPT profiles and 10 cities of varying seismicity. The results of this comparison show that the conventional procedures of estimating lateral spread displacements are sufficient for areas of low seismicity and for lower return periods. However, by not accounting for all uncertainties, the conventional methods under-predict lateral spread displacements in areas of higher seismicity. This is cause for concern as it indicates that engineers in industry using the conventional methods are likely under-designing structures to resist lateral spread displacements for larger seismic events.
4

Development of a Performance-Based Procedure for Assessment of Liquefaction-Induced Lateral Spread Displacements Using the Cone Penetration Test

Coutu, Tyler Blaine 01 October 2017 (has links)
Liquefaction-induced lateral spread displacements cause severe damage to infrastructure, resulting in large economic losses in affected regions. Predicting lateral spread displacements is an important aspect in any seismic analysis and design, and many different methods have been developed to accurately estimate these displacements. However, the inherent uncertainty in predicting seismic events, including the extent of liquefaction and its effects, makes it difficult to accurately estimate lateral spread displacements. Current conventional methods of predicting lateral spread displacements do not completely account for uncertainty, unlike a performance-based earthquake engineering (PBEE) approach that accounts for the all inherent uncertainty in seismic design. The PBEE approach incorporates complex probability theory throughout all aspects of estimating liquefaction-induced lateral spread displacements. A new fully-probabilistic PBEE method, based on results from the cone penetration test (CPT), was created for estimating lateral spread displacements using two different liquefaction triggering procedures. To accommodate the complexity of all probabilistic calculations, a new seismic hazard analysis tool, CPTLiquefY, was developed. Calculated lateral spread displacements using the new fully-probabilistic method were compared to estimated displacements using conventional methods. These comparisons were performed across 20 different CPT profiles and 10 cities of varying seismicity. The results of this comparison show that the conventional procedures of estimating lateral spread displacements are sufficient for areas of low seismicity and for lower return periods. However, by not accounting for all uncertainties, the conventional methods under-predict lateral spread displacements in areas of higher seismicity. This is cause for concern as it indicates that engineers in industry using the conventional methods are likely under-designing structures to resist lateral spread displacements for larger seismic events.
5

Study of cone penetration in silica sands using digital image correlation (DIC) analysis and x-ray computed tomography (XCT)

Eshan Ganju (11104863) 09 July 2021 (has links)
Cone penetration in sands is a complex process: it contains several challenges that geomechanicians face, such as large displacements, large strains, strain localization, and microscale phenomena such as particle crushing and sand fabric evolution. In order to gain a deeper understanding of the penetration process and the mechanisms controlling penetration resistance, capturing these displacement and strain fields and microscale phenomena is necessary. Furthermore, as more sophisticated theoretical models become available for the simulation of the cone penetration problem, the experimental validation of those methods becomes vital.<br><div><br></div><div>This dissertation presents a multiscale study of the cone penetration process in silica sands. The penetration problem is investigated using a combinational approach consisting of calibration chamber experiments, digital image correlation (DIC) analysis, and X-ray computed Tomography (XCT) scans. Three silica sands with different particle characteristics are used in the experimental program. These three sands have similar particle size distributions; however, they differ in particle morphologies and particle strengths. These differences allow a study of the effect of microscale sand properties on the macroscale response of the sands to the cone penetration process. The three silica sands used in this research are fully characterized using laboratory experiments to obtain particle size distributions, particle morphologies, particle crushing strengths, minimum and maximum packing densities, and critical-state friction angles. Subsequently, both dense and medium-dense samples of the three sands are compressed in a uniaxial loading device placed inside an X-ray microscope (XRM) and scanned at multiple stress levels during uniaxial compression. Results from uniaxial compression experiments indicate that: (1) the compressibility of the sands is closely tied to particle morphology and strength, and (2) the anisotropy in the orientations of interparticle contact normals generally increases with axial stress; however, this increase is limited by the occurrence of particle crushing in the sample.<br></div><div><br></div><div>Subsequently, cone penetration experiments are performed under different confinement levels on dense samples of the three sands in aspecial half-cylindrical calibration chamber equipped with DIC capabilities. For each penetration experiment, incremental displacement fields around the cone penetrometer are obtained using DIC analysis, and these incremental displacement fields are further analyzed to compute the incremental strain fields. A novel methodology is developed to obtain the shear-band patterns that develop around the penetrometer automatically. Furthermore, differences in the shear-band patterns in deep and shallow penetration environments are also investigated. Results show that strain fields tend to localize intensely near the penetrometer tip, and the shear bands tend to develop along the inclined face and near the shoulder of the penetrometer. Significant differences in the shear band patterns in deep and shallow penetration environments are also observed.<br></div><div><br></div><div>After each cone penetration experiment, a specially developed agar-impregnation technique is used to collect minimally disturbedsand samples from around the penetrometertip. These agar-impregnated sand samples are scanned in the XRM to obtain 3D tomography data, which are further analyzed to quantify particle crushing around the penetrometer tip. The results show that: (1) for a given sample density, the amount of crushing around the cone penetrometer depends on the confinement and the sand particle characteristics, (2) the level of crushing is not uniform around the penetrometer tip, with more severe crushing observed near the shoulder of the penetrometer, and (3) the regions with more severe particle crushing around the penetrometer approximately overlap with regions of high shear strain and volumetric contraction. A framework is also proposed to obtain the ratio of penetration resistance in more crushable sands to penetration resistance in less crushable sands. Furthermore, a novel resin-impregnation technique is also developed to collect undisturbedsand samples from around the penetrometer tip. The resin-impregnated sand sample collected after one of the penetration experiments is scanned in the XRM to obtain the 3D tomography data, which is then analyzed to obtain the distribution of interparticle contact normal orientations at multiple locations around the penetrometer tip. These analyses indicate that the interparticle contact normals tend to orient themselves with the incremental principal strains around the penetrometer: below the penetrometer tip, the interparticle contact normals orient vertically upwards, while closer to the shoulder of the penetrometer, the interparticle contact normals become more radially inclined.<br></div><div><br></div><div>Data presented in this dissertation on penetration resistance, incremental displacement fields, incremental strain fields, particle crushing, and interparticle contact normal orientations around the cone penetrometer are aimed to be useful to researchers working on the multiscale modeling of penetration processes in granular materials and aid in the further development of our understanding of penetration processes in sands.<br></div>
6

Desenvolvimento de uma sonda TDR helicoidal para uso em conjunto com o ensaio CPT / Developing a coil TDR probe to use together with the CPT test

Guerrero Doria, Katerin 21 August 2015 (has links)
A reflectometria no domínio do tempo permite estimar o teor de umidade de um meio através da sua correlação com a constante dielétrica. Uma sonda helicoidal TDR, que pode ser cravada em conjunto outros ensaios de penetração in situ para a estimativa do teor de umidade em diversas profundidades, tem aplicação interessante para a investigação geotécnica do subsolo. No presente trabalho, uma sonda TDR foi adaptada e utilizada em conjunto ao ensaio CPT para caracterização de um perfil de solo arenoso não saturado que ocorre na região de Bauru (SP). A calibração dessa sonda foi feita em laboratório especificamente para esse solo. As equações de calibração que mostraram os melhores resultados foram definidas correlacionando a constante dielétrica, condutividade elétrica aparente e a massa específica seca com o teor de umidade. Com o intuito de melhorar a acurácia na determinação do teor de umidade em campo e eliminar possíveis interferências no registro da onda eletromagnética, foram efetuadas modificações em algumas características do projeto original dessa sonda. Tais modificações consistiram em separar os eletrodos condutores e as partes metálicas da sonda, e eliminar o cabo coaxial de extensão, conectando a sonda diretamente a um cabo coaxial de 12 m de comprimento. Tais mudanças levaram a uma melhoria significativa na determinação do perfil de teor de umidade do local estudado. Os valores de teor de umidade de campo determinados usando o TDR ao longo de 8 m de profundidade foram comparados com os valores de referência obtidos de amostras deformadas retiradas com trado mecânico. O erro médio na estimativa do perfil de teor de umidade gravimétrico utilizando a sonda TDR helicoidal foi de 1.61%, na última campanha de ensaios realizados. Os resultados dessa pesquisa indicam que esta ferramenta é adequada para estimar do perfil de teor de umidade para uso em conjunto com o ensaio CPT. / The time domain reflectometry allows estimating the moisture content of a medium by means of its correlation with the dielectric constant. A coil TDR probe, which can be driven into the ground together with others in situ penetration tests, can be used to estimate the moisture content at different depths. It is an interesting approach for geotechnical site characterization. In this work, a coil TDR probe was adapted and used in combination with the CPT test for the site characterization of an unsaturated sandy soil profile which occurs in the region of Bauru (SP). The probe calibration was performed in laboratory specifically for that soil. The calibration equation, which presented the best results, were defined correlating the dielectric constant, electrical conductivity and dry density with the moisture content. In order to improve the accuracy for determining the water content in the field and to eliminate possible interference on the electromagnetic wave registration, modifications were made in some characteristics of the original design of this probe. Such modifications consisted in separating the conductive electrodes from the metal parts of the probe, and eliminating the coaxial extension cable, connecting the probe directly to a coaxial cable 12 m long. Such changes have led to a significant improvement in the determination of the moisture content profile of the studied site. The moisture content values determined in situ by using the TDR along 8 m depth were compared with reference values obtained from disturbed soil samples collected using mechanical augers. The root mean square error of the gravimetric water content profile using the TDR coil probe was 1.61% in the last test campaign. The results of this research indicate that this tool is suitable to estimate the gravimetric moisture content together with the CPT test.
7

Desenvolvimento de uma sonda TDR helicoidal para uso em conjunto com o ensaio CPT / Developing a coil TDR probe to use together with the CPT test

Katerin Guerrero Doria 21 August 2015 (has links)
A reflectometria no domínio do tempo permite estimar o teor de umidade de um meio através da sua correlação com a constante dielétrica. Uma sonda helicoidal TDR, que pode ser cravada em conjunto outros ensaios de penetração in situ para a estimativa do teor de umidade em diversas profundidades, tem aplicação interessante para a investigação geotécnica do subsolo. No presente trabalho, uma sonda TDR foi adaptada e utilizada em conjunto ao ensaio CPT para caracterização de um perfil de solo arenoso não saturado que ocorre na região de Bauru (SP). A calibração dessa sonda foi feita em laboratório especificamente para esse solo. As equações de calibração que mostraram os melhores resultados foram definidas correlacionando a constante dielétrica, condutividade elétrica aparente e a massa específica seca com o teor de umidade. Com o intuito de melhorar a acurácia na determinação do teor de umidade em campo e eliminar possíveis interferências no registro da onda eletromagnética, foram efetuadas modificações em algumas características do projeto original dessa sonda. Tais modificações consistiram em separar os eletrodos condutores e as partes metálicas da sonda, e eliminar o cabo coaxial de extensão, conectando a sonda diretamente a um cabo coaxial de 12 m de comprimento. Tais mudanças levaram a uma melhoria significativa na determinação do perfil de teor de umidade do local estudado. Os valores de teor de umidade de campo determinados usando o TDR ao longo de 8 m de profundidade foram comparados com os valores de referência obtidos de amostras deformadas retiradas com trado mecânico. O erro médio na estimativa do perfil de teor de umidade gravimétrico utilizando a sonda TDR helicoidal foi de 1.61%, na última campanha de ensaios realizados. Os resultados dessa pesquisa indicam que esta ferramenta é adequada para estimar do perfil de teor de umidade para uso em conjunto com o ensaio CPT. / The time domain reflectometry allows estimating the moisture content of a medium by means of its correlation with the dielectric constant. A coil TDR probe, which can be driven into the ground together with others in situ penetration tests, can be used to estimate the moisture content at different depths. It is an interesting approach for geotechnical site characterization. In this work, a coil TDR probe was adapted and used in combination with the CPT test for the site characterization of an unsaturated sandy soil profile which occurs in the region of Bauru (SP). The probe calibration was performed in laboratory specifically for that soil. The calibration equation, which presented the best results, were defined correlating the dielectric constant, electrical conductivity and dry density with the moisture content. In order to improve the accuracy for determining the water content in the field and to eliminate possible interference on the electromagnetic wave registration, modifications were made in some characteristics of the original design of this probe. Such modifications consisted in separating the conductive electrodes from the metal parts of the probe, and eliminating the coaxial extension cable, connecting the probe directly to a coaxial cable 12 m long. Such changes have led to a significant improvement in the determination of the moisture content profile of the studied site. The moisture content values determined in situ by using the TDR along 8 m depth were compared with reference values obtained from disturbed soil samples collected using mechanical augers. The root mean square error of the gravimetric water content profile using the TDR coil probe was 1.61% in the last test campaign. The results of this research indicate that this tool is suitable to estimate the gravimetric moisture content together with the CPT test.
8

Geotechnical Site Characterization And Liquefaction Evaluation Using Intelligent Models

Samui, Pijush 02 1900 (has links)
Site characterization is an important task in Geotechnical Engineering. In situ tests based on standard penetration test (SPT), cone penetration test (CPT) and shear wave velocity survey are popular among geotechnical engineers. Site characterization using any of these properties based on finite number of in-situ test data is an imperative task in probabilistic site characterization. These methods have been used to design future soil sampling programs for the site and to specify the soil stratification. It is never possible to know the geotechnical properties at every location beneath an actual site because, in order to do so, one would need to sample and/or test the entire subsurface profile. Therefore, the main objective of site characterization models is to predict the subsurface soil properties with minimum in-situ test data. The prediction of soil property is a difficult task due to the uncertainities. Spatial variability, measurement ‘noise’, measurement and model bias, and statistical error due to limited measurements are the sources of uncertainities. Liquefaction in soil is one of the other major problems in geotechnical earthquake engineering. It is defined as the transformation of a granular material from a solid to a liquefied state as a consequence of increased pore-water pressure and reduced effective stress. The generation of excess pore pressure under undrained loading conditions is a hallmark of all liquefaction phenomena. This phenomena was brought to the attention of engineers more so after Niigata(1964) and Alaska(1964) earthquakes. Liquefaction will cause building settlement or tipping, sand boils, ground cracks, landslides, dam instability, highway embankment failures, or other hazards. Such damages are generally of great concern to public safety and are of economic significance. Site-spefific evaluation of liquefaction susceptibility of sandy and silty soils is a first step in liquefaction hazard assessment. Many methods (intelligent models and simple methods as suggested by Seed and Idriss, 1971) have been suggested to evaluate liquefaction susceptibility based on the large data from the sites where soil has been liquefied / not liquefied. The rapid advance in information processing systems in recent decades directed engineering research towards the development of intelligent models that can model natural phenomena automatically. In intelligent model, a process of training is used to build up a model of the particular system, from which it is hoped to deduce responses of the system for situations that have yet to be observed. Intelligent models learn the input output relationship from the data itself. The quantity and quality of the data govern the performance of intelligent model. The objective of this study is to develop intelligent models [geostatistic, artificial neural network(ANN) and support vector machine(SVM)] to estimate corrected standard penetration test (SPT) value, Nc, in the three dimensional (3D) subsurface of Bangalore. The database consists of 766 boreholes spread over a 220 sq km area, with several SPT N values (uncorrected blow counts) in each of them. There are total 3015 N values in the 3D subsurface of Bangalore. To get the corrected blow counts, Nc, various corrections such as for overburden stress, size of borehole, type of sampler, hammer energy and length of connecting rod have been applied on the raw N values. Using a large database of Nc values in the 3D subsurface of Bangalore, three geostatistical models (simple kriging, ordinary kriging and disjunctive kriging) have been developed. Simple and ordinary kriging produces linear estimator whereas, disjunctive kriging produces nonlinear estimator. The knowledge of the semivariogram of the Nc data is used in the kriging theory to estimate the values at points in the subsurface of Bangalore where field measurements are not available. The capability of disjunctive kriging to be a nonlinear estimator and an estimator of the conditional probability is explored. A cross validation (Q1 and Q2) analysis is also done for the developed simple, ordinary and disjunctive kriging model. The result indicates that the performance of the disjunctive kriging model is better than simple as well as ordinary kriging model. This study also describes two ANN modelling techniques applied to predict Nc data at any point in the 3D subsurface of Bangalore. The first technique uses four layered feed-forward backpropagation (BP) model to approximate the function, Nc=f(x, y, z) where x, y, z are the coordinates of the 3D subsurface of Bangalore. The second technique uses generalized regression neural network (GRNN) that is trained with suitable spread(s) to approximate the function, Nc=f(x, y, z). In this BP model, the transfer function used in first and second hidden layer is tansig and logsig respectively. The logsig transfer function is used in the output layer. The maximum epoch has been set to 30000. A Levenberg-Marquardt algorithm has been used for BP model. The performance of the models obtained using both techniques is assessed in terms of prediction accuracy. BP ANN model outperforms GRNN model and all kriging models. SVM model, which is firmly based on the theory of statistical learning theory, uses regression technique by introducing -insensitive loss function has been also adopted to predict Nc data at any point in 3D subsurface of Bangalore. The SVM implements the structural risk minimization principle (SRMP), which has been shown to be superior to the more traditional empirical risk minimization principle (ERMP) employed by many of the other modelling techniques. The present study also highlights the capability of SVM over the developed geostatistic models (simple kriging, ordinary kriging and disjunctive kriging) and ANN models. Further in this thesis, Liquefaction susceptibility is evaluated from SPT, CPT and Vs data using BP-ANN and SVM. Intelligent models (based on ANN and SVM) are developed for prediction of liquefaction susceptibility using SPT data from the 1999 Chi-Chi earthquake, Taiwan. Two models (MODEL I and MODEL II) are developed. The SPT data from the work of Hwang and Yang (2001) has been used for this purpose. In MODEL I, cyclic stress ratio (CSR) and corrected SPT values (N1)60 have been used for prediction of liquefaction susceptibility. In MODEL II, only peak ground acceleration (PGA) and (N1)60 have been used for prediction of liquefaction susceptibility. Further, the generalization capability of the MODEL II has been examined using different case histories available globally (global SPT data) from the work of Goh (1994). This study also examines the capabilities of ANN and SVM to predict the liquefaction susceptibility of soils from CPT data obtained from the 1999 Chi-Chi earthquake, Taiwan. For determination of liquefaction susceptibility, both ANN and SVM use the classification technique. The CPT data has been taken from the work of Ku et al.(2004). In MODEL I, cone tip resistance (qc) and CSR values have been used for prediction of liquefaction susceptibility (using both ANN and SVM). In MODEL II, only PGA and qc have been used for prediction of liquefaction susceptibility. Further, developed MODEL II has been also applied to different case histories available globally (global CPT data) from the work of Goh (1996). Intelligent models (ANN and SVM) have been also adopted for liquefaction susceptibility prediction based on shear wave velocity (Vs). The Vs data has been collected from the work of Andrus and Stokoe (1997). The same procedures (as in SPT and CPT) have been applied for Vs also. SVM outperforms ANN model for all three models based on SPT, CPT and Vs data. CPT method gives better result than SPT and Vs for both ANN and SVM models. For CPT and SPT, two input parameters {PGA and qc or (N1)60} are sufficient input parameters to determine the liquefaction susceptibility using SVM model. In this study, an attempt has also been made to evaluate geotechnical site characterization by carrying out in situ tests using different in situ techniques such as CPT, SPT and multi channel analysis of surface wave (MASW) techniques. For this purpose a typical site was selected wherein a man made homogeneous embankment and as well natural ground has been met. For this typical site, in situ tests (SPT, CPT and MASW) have been carried out in different ground conditions and the obtained test results are compared. Three CPT continuous test profiles, fifty-four SPT tests and nine MASW test profiles with depth have been carried out for the selected site covering both homogeneous embankment and natural ground. Relationships have been developed between Vs, (N1)60 and qc values for this specific site. From the limited test results, it was found that there is a good correlation between qc and Vs. Liquefaction susceptibility is evaluated using the in situ test data from (N1)60, qc and Vs using ANN and SVM models. It has been shown to compare well with “Idriss and Boulanger, 2004” approach based on SPT test data. SVM model has been also adopted to determine over consolidation ratio (OCR) based on piezocone data. Sensitivity analysis has been performed to investigate the relative importance of each of the input parameters. SVM model outperforms all the available methods for OCR prediction.

Page generated in 0.11 seconds