• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biomolecular strategies for cell surface engineering

Wilson, John Tanner 09 January 2009 (has links)
Islet transplantation has emerged as a promising cell-based therapy for the treatment of diabetes, but its clinical efficacy remains limited by deleterious host responses that underlie islet destruction. In this dissertation, we describe the assembly of cell surface-supported thin films that confer molecular-level control over the composition and biophysicochemical properties of the islet surface with implications for improving islet engraftment. Specifically, the process of layer-by-layer (LbL) polymer self assembly was employed to generate nanothin films of diverse architecture with tunable properties directly on the extracellular surface of individual islets. Importantly, these studies are the first to report in vivo survival and function of nanoencapsulated cells, and have helped establish a conceptual framework for translating the diverse applications of LbL films to cellular interfaces. Additionally, through proper design of film constituents, coatings displaying ligands and bioorthogonally reactive handles may be generated, providing a modular strategy for incorporating exogenously derived regulators of host responses alongside native constituents of the islet surface. Towards this end, a strategy was developed to tether thrombomodulin to the islet surface in a site-specific manner, thereby facilitating local generation of the powerful anti-inflammatory agent, activated protein C. Collectively, this work offers novel biomolecular strategies for cell surface engineering with broad biomedical and biotechnological applications in cell-based therapeutics and beyond.
2

Oxide-coated vertically aligned carbon nanotube forests as thermal interface materials

Vasquez, Cristal Jeanette 27 August 2014 (has links)
Carbon nanotube (CNT) forests have outstanding thermal, electrical, and mechanical properties, which have generated significant interest as thermal interface materials (TIMs). Some drawbacks to using CNTs as TIMs include poor substrate adhesion, high interface resistances inhibiting thermal transport, and lack of electrical insulation in electronic component applications. It is thus useful to be able to modify CNTs to reduce their electrical conductivity while maintaining high thermal conductivity and interface conductance, and high mechanical compliance. A recent report suggests that nanoscale oxide coatings could be applied to CNTs in forests without changing the mechanical deformation behavior of the forests. Oxide coatings could also provide environmental stability as well as better adhesion to the substrate compared to pristine CNT forests. In this study, we investigated thermal and electrical resistance of CNT forests with an oxide coating. Low-pressure chemical vapor deposition (LPCVD) was used to produce CNTs on high-conductivity Si substrates. Plasma-enhanced atomic layer deposition (PALD) was used to deposit Al2O3 on individual CNTs in forests. This process was facilitated by O2 plasma pretreatment to functionalize the surface of the CNTs and nucleate oxide growth. Several analytical techniques were used to characterize the CNT-oxide composites, including scanning electron microscopy, Raman and X-ray photoelectron spectroscopy. Thermal conductivity and thermal interface resistance were measured using a modified photoacoustic technique. The oxide coating had no significant effect on the effective thermal conductivity of the forests, in contrast to expectations of increased phonon scattering. Electrical resistivity measurements were made and a threefold increase was observed for the oxide-coated forests. This approach could emerge as a promising route to create a viable TIM for thermally conductive and electrically insulating applications.
3

Corrosion and protections of Somaloy® components

Yu, Zhao January 2016 (has links)
Corrosion protection is very significant for metals in modern society from the view of industrial development. This thesis work project involves a research study that is aimed to investigate the effect of corrosion on the mechanical strength and magnetic properties of four no treated or treated Somaloy® component samples (Somaloy®700 1P,  Somaloy®700 3P, Somaloy®700HR 5P and Somaloy®110i 5P) provided by Höganäs AB and laminated steel sheets by salt spray test. The coatings for protection are phosphoric acid coating, sodium silicate coating, DCA-Modified silicone conformal coating and water-borne single coat paint respectively. Then the protective properties are evaluated by Electrochemical Impedance Spectroscopy (EIS) in 0.1 mol/L NaCl solution after 7 days exposure.   From transverse rupture strength (TRS) and hysteresis loop measurements by salt spray test, although the bar samples are treated coating, the corrosion decreases the mechanical strength to a certain extent more or less over time. For the magnetic properties, the corrosive environments hardly influence the magnetic parameters of the no treated or four types of coatings treated Somaloy® components. But the all kinds of magnetic parameters for laminated ring samples have a great variation after salt spray test.   In the EIS measurements, for the no treated samples, the initial corrosion resistance is only several hundred ohms and decreases after 1 hour, 8 hours and 1day exposure, then increases to a certain extent with time due to the corrosion products formed on the surface. For the sodium silicate coating, the initial corrosion resistance is approximately several ten thousands ohms and decreases rapidly only after 1 day exposure to several hundred ohms due to the sodium silicate film dissolves in the electrolyte solution and has no effective protective property. Then the following corrosion process is almost same as the no treated samples. For the water-borne single coat paint, the initial corrosion resistance can reach to several Giga-ohms and decreases over time, but can still stay at  level, indicating that this coating has a very good and effective protective properties.   EIS experiments indicate that water-borne single coat paint has a more effective protection than sodium silicate coating and can apply a better corrosion protection for the Somaloy® components   Key words: corrosion protection, soft magnetic composites, phosphoric acid coating, sodium silicate coating, DCA-Modified silicone conformal coating , water-borne single coat paint, salt spray test, TRS, hysteresis loop, EIS

Page generated in 0.0863 seconds