Spelling suggestions: "subject:"conjugate heat btransfer (CHT)"" "subject:"conjugate heat cotransfer (CHT)""
1 |
Total Temperature Probe Performance for Subsonic Flows using Mixed Fidelity ModelingVincent, Tyler Graham 08 April 2019 (has links)
An accurate measurement of total temperature in turbomachinery flows remains critical for component life models and cycle performance optimization. While many techniques exist to measure these flows, immersed thermocouple based probes remain highly desirable due to well established practices for probe design and implementation in typical industrial flow applications. However, as engine manufacturers continue to push towards higher maximum cycle temperatures and smaller flow passages, the continued use of these probes requires new probe designs considering both improved sensor durability and measurement accuracy. Increased maximum temperatures introduce many challenges for total temperature measurements using conventional immersed probes, including increased influences of conduction, convection, and radiation heat transfer between the sensor, fluid and the surroundings due to large thermal gradients present in real turbomachinery systems. While these effects have been previously investigated, the available design models are very limited to specific geometries and flow conditions. In this Dissertation, a more fundamental understanding of the flow behavior around typical vented shield style total temperature probes as a function of probe geometry and operating condition is gained using results from high-fidelity Computational Fluid Dynamics simulations with Conjugate Heat Transfer. A parametric study was conducted considering three non-dimensional probe geometric ratios (vent location to shield length (0.029-0.806), sensor diameter to shield inner diameter (0.252-0.672), and shield outer diameter to strut/mount thickness (0.245-0.759)) and three operating conditions (total temperature (70, 850, 2500°F) and pressure (1, 1, 10 atm), respectively) at a moderate Mach number of 0.4. Results were further quantified in the form of new empirical correlations necessary for rapid thermal performance evaluations of current and future probe designs. Additionally, a new mixed-fidelity or Reduced Order Modeling technique was developed which allows the coupling of high fidelity surface heat transfer data from CFD with a generalized form of the 1-D conducting solid equations for evaluating radiation and transient influences on sensor performance.
These new flow and heat transfer correlations together with the new Reduced Order Modeling technique developed here greatly enhance the capabilities of designers to evaluate performance of current and future probe designs, with higher accuracy and with significant reductions in computational resources. / Doctor of Philosophy / An accurate measurement of total temperature in turbomachinery flows remains critical for component life models and cycle performance optimization. While many techniques exist to measure these flows, immersed thermocouple based probes remain highly desirable due to well established practices for probe design and implementation in typical industrial flow applications. However, as engine manufacturers continue to push towards higher maximum cycle temperatures and smaller flow passages, the continued use of these probes requires new probe designs considering both improved sensor durability and measurement accuracy. Increased maximum temperatures introduce many challenges for total temperature measurements using conventional immersed probes, including increased influences of conduction, convection, and radiation heat transfer between the sensor, fluid and the surroundings due to large thermal gradients present in real turbomachinery systems. While these effects have been thoroughly described and quantified in the past, the available design models are very limited to specific geometries and flow conditions. In this Dissertation, a more fundamental understanding of the flow behavior around typical vented shield style total temperature probes as a function of probe geometry and operating condition is gained using results from high-fidelity Computational Fluid Dynamics simulations with Conjugate Heat Transfer (CHT) capabilities. Results were further quantified in the form of new empirical correlations necessary for rapid thermal performance evaluations of current and future probe designs. Additionally, a new mixed-fidelity or Reduced Order Modeling (ROM) technique was developed which allows the coupling of high fidelity surface heat transfer data from CFD with a generalized form of the 1-D conducting solid equations for readily predicting the impact of radiation environment and transient errors on sensor performance.
|
2 |
Modelling of Heat Losses through Coated Cylinder Walls and their Impact on Engine PerformanceEscalona Cornejo, Johan Enrique 13 April 2021 (has links)
[ES] Actualmente, los vehículos propulsados por motores de combustión interna alternativos (MCIA) constituyen uno de los mayores agentes contaminantes para el medio ambiente. En este sentido, ha existido una importante cooperación internacional para promulgar leyes que regulen las emisiones contaminantes. De manera que los fabricantes de coches han impulsado el desarrollo de tecnologías más limpias y amigables con el medio ambiente. Ante esta situación, ha surgido recientemente la electrificación, como uno de los proyectos más ambiciosos de la industria automotriz para los próximos años. Sin embargo, esta meta parece aún lejana en el horizonte. En tal sentido, la hibridación con motores térmicos y eléctricos parece ser el camino a seguir en el corto plazo. Por consiguiente, los MCIA seguirán siendo la principal fuente de propulsión terrestre durante los años venideros. Para mitigar los inherentes efectos contaminantes de los motores de combustión interna, se han propuesto diferentes tecnologías para desarrollar motores más eficientes. Entre ellas, la aplicación de recubrimientos térmicos en las paredes de la cámara de combustión apunta a reducir las pérdidas por calor en el motor, y así aumentar su eficiencia térmica. El objetivo principal de esta tesis es estudiar el impacto de aplicar recubrimientos térmicos en las paredes de la cámara de combustión en motores de combustión interna. En este sentido, determinar los flujos de calor experimentalmente a través de las paredes es complicado y no del todo fiables, debido a que dependen de la medición de las temperaturas de pared. Por este motivo, el CFD-CHT es utilizado. El primer paso fue validar la herramienta computacional que es utilizada para los cálculos en motores de combustión interna. Para ello se realizó un estudio preliminar en geometrías sencillas como una tubería circular o un canal rectangular. Se evaluaron los modelos de transferencia de calor y se determinó la relevancia de ciertos parámetros como la rugosidad. Para complementar el estudio, se realizó un análisis de las temperaturas en una geometría más realista como el pistón de un MCIA. Los valores de temperatura calculados por el software fueron casi iguales a las medidas experimentales. Por consiguiente, la fiabilidad de la herramienta computacional fue verificada. Seguidamente, se plantea una metodología para abordar al problema de modelar capas muy finas de recubrimientos térmicos en el espacio tridimensional. Para de esta manera poder simular las paredes recubiertas en la cámara de combustión. La metodología consiste en definir un material equivalente con un espesor y número de nodos que permitan un mallado computacionalmente realista. Para ello se utilizó un DoE en combinación con un análisis de regresión múltiple. Los primeros estudios se llevaron a cabo en un motor de gasolina. El modelado se llevó a cabo para dos configuraciones: motor con paredes metálicas y motor con pistón y culata recubiertos. A través de un análisis exhaustivo de la transferencia del calor, se evaluó el impacto que tenía aplicar el revestimiento térmico en el motor. La comparación con datos experimentales demuestran la utilidad del cálculo CHT para evaluar las pérdidas de calor en un MCIA. Sin embargo, ninguna mejora fue observada en el motor de gasolina debido al tipo de recubrimiento aplicado en las paredes de la cámara de combustión. Las simulaciones llevadas a cabo en el motor de gasolina permitieron determinar que los cálculos CHT son computacionalmente largos. En este sentido, una serie de estrategias diseñadas a optimizar los cálculos han sido analizadas con el fin de reducir los tiempos de cálculo. A través de este estudio, se encontró una metodología para optimizar la malla del dominio computacional. Esta última, emplea un refinamiento AMR basado en la distancia de pared. Este método es utilizado para modelar el impacto de aplicar un revestimiento tér / [CA] Actualment, els vehicles propulsats per motors de combustió interna alter- natius (MCIA) constitueixen un dels majors agents contaminants per al medi ambient. En aquest sentit, ha existit una important cooperació internacional per a promulgar lleis que regulen les emissions contaminants. De manera que els fabricants de cotxes han impulsat el desenvolupament de tecnologies més netes i amigables amb el medi ambient. Davant aquesta situació, ha sorgit recentment l'electrificació, com un dels projectes més ambiciosos de la indústria automotriu per als pròxims anys. No obstant això, aquesta meta sembla encara llunyana en l'horitzó. En tal sentit, la hibridació amb motors tèrmics i elèctrics sembla ser el camí a seguir en el curt termini. Per consegüent, els MCIA continuaran sent la principal font de propulsió terrestre durant els anys esdevenidors. Per a mitigar els inherents efectes contaminants dels motors de combustió interna, s'han proposat diferents tecnologies per a desenvolupar motors més eficients. Entre elles, l'aplicació de recobriments tèrmics en les parets de la cambra de combustió apunta a reduir les pèrdues per calor en el motor, i així augmentar la seua eficiència tèrmica. L'objectiu principal d'aquesta tesi és estudiar l'impacte d'aplicar reco- briments tèrmics en les parets de la cambra de combustió en motors de combustió interna. En aquest sentit, determinar els fluxos de calor experi- mentalment a través de les parets és complicat i no del tot fiable, pel fet que depenen del mesurament de les temperatures de paret. Per aquest motiu, el CFD-CHT (Computational fluid dynamics-Conjugate Heat Transfer) és utilitzat. El primer pas va ser validar l'eina computacional que és utilitzada per als càlculs en motors de combustió interna. Per a això es va realitzar un estudi preliminar en geometries senzilles com una canonada circular o un canal rectangular. Es van avaluar els models de transferència de calor i es va determinar la rellevància de certs paràmetres com la rugositat. Per a complementar l'estudi, es va realitzar una anàlisi de les temperatures en una geometria més realista com el pistó d'un MCIA. Els valors de temperatura calculats pel software van ser quasi iguals a les mesures experimentals. Per consegüent, la fiabilitat de l'eina computacional va ser verificada. Seguidament, es planteja una metodologia per a abordar el problema de modelar capes molt fines de recobriments tèrmics en l'espai tridimensional, per a d'aquesta manera poder simular les parets recobertes en la cambra de combustió. La metodologia consisteix a definir un material equivalent amb una grossària i nombre de nodes que permeten un mallat computacionalment realista. Per a això es va utilitzar un DoE (Design of experiments) en combinació amb una anàlisi de regressió múltiple. Els primers estudis es van dur a terme en un motor de gasolina. El mod- elatge es va dur a terme per a dues configuracions: motor amb parets metàl·liques i motor amb pistó i culata recoberts. A través d'una anàlisi exhaustiva de la transferència de la calor, es va avaluar l'impacte que tenia aplicar el revestiment tèrmic en el motor. La comparació amb dades experi- mentals demostren la utilitat del càlcul CHT per a avaluar les pèrdues de calor en un MCIA. No obstant això, cap millora va ser observada en el motor de gasolina a causa de la mena de recobriment aplicada en les parets de la cambra de combustió. Les simulacions dutes a terme en el motor de gasolina van permetre determinar que els càlculs CHT són computacionalment llargs. En aquest sentit, una sèrie d'estratègies dissenyades per a optimitzar els càlculs han sigut analitzades amb la finalitat de reduir els temps de càlcul. A través d'aquest estudi, es va trobar una metodologia per a optimitzar la malla del domini computacional. Aquesta última, empra un refinament AMR basat en la distància de paret. / [EN] Currently, vehicles powered by internal combustion engines (ICE) are targeted as contributing largely to environmental pollution. In this regard, there has been significant international cooperation to enact laws that regulate the polluting emissions. Hence, the car manufacturers have oriented efforts to the development of cleaner and more eco-friendly technologies. In order to face this situation, electrified vehicles have emerged as one of the most promising projects in the automotive industry for the coming years. However, this target still seems far on the horizon. In this sense, hybridization with thermal and electric engines seems to be the path to follow in the short term. Consequently, ICEs will continue to be one of the important sources of terrestrial propulsion in the coming years. To mitigate the inherent polluting effects of internal combustion engines, different technologies have been proposed to develop more efficient engines. Among them, the application of thermal coatings on the combustion chamber walls. This technology aims at reducing the heat losses in the engine, and thus increase its thermal efficiency. The main objective of this thesis is to study the impact of coating the combustion chamber walls of an engine on heat losses and thermal efficiency. The experimental definition of the heat fluxes through the walls is complex and not very reliable because it requires the measurement of wall temperatures. For this reason, CFD-CHT (Computational fluid dynamics-Conjugate Heat Transfer) is used. The first step was to validate the computational tool employed for CFD-CHT calculations in internal combustion engines. For this, a preliminary study in simple geometries such as a circular pipe or a rectangular channel was performed. Heat transfer models were evaluated and the relevance of certain parameters such as roughness was determined. To reinforce the study, a thermal analysis in a more realistic geometry such as the piston of a CI engine was carried out. The temperature values calculated by the software were almost the same as the experimental measurements. Consequently, the reliability of the computational tool was verified. Next, a methodology was proposed to address the problem of modeling very thin layers of thermal coating for three-dimensional CFD-CHT calculations. The methodology consists in defining an "equivalent material" with a thickness and number of nodes that allow a computationally realistic mesh. For this, a DoE in combination with a multiple regression analysis was employed. The first CFD-CHT simulations in ICEs were carried out for a gasoline engine. The study was performed for two configurations: metallic engine and engine with coated piston and cylinder head. An exhaustive heat transfer analysis was made in order to determine the impact of applying the thermal coating on the engine. Comparison with experimental data proved the suitability of the CHT calculations to evaluate heat losses in ICEs. However, no improvement on engine efficiency was observed in the gasoline engine due to the type of coating applied on the combustion chamber walls. Experience with the gasoline engine calculations showed that CHT calculations were very time consuming. In this regard, some strategies aimed at optimizing the calculations were analyzed in order to reduce calculation times. The most successful methodology was based on AMR cell refinement to optimize the mesh and reduce significantly the computational costs. This approach was used to study the impact of applying a new generation thermal coating on the piston top of a Diesel engine. The results obtained indicated that this type of coating allows for some improvement in the thermal efficiency of the engine without affecting its performance. / The author wishes to acknowledge the financial support received through contract FPI-2018-S2-1205 of the Programa para la Formación de Personal investigador (FPI) 2018 of Universitat Politècnica de València. Parts of the work presented in this thesis have received funding from the European Union’s Horizon 2020 research and innovation programme undergrant agreement No 724084.The author wishes to thank IFPEN for their permission to use their single cylinder engine geometry and experimental results, as well as Saint Gobain Research Provence for providing the coating characteristics.The respondent wants to express its gratitude to CONVERGENT SCIENCE Inc. and Convergent Science GmbH for their kind support for performingthe CFD-CHT calculations using CONVERGE software / Escalona Cornejo, JE. (2021). Modelling of Heat Losses through Coated Cylinder Walls and their Impact on Engine Performance [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/165244
|
Page generated in 0.0899 seconds