• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electroactive Conjugated Polyelectrolytes Based on EDOT From Synthesis to Organic Electronics

Gabrielsson, Roger January 2012 (has links)
Conjugated polyelectrolytes (CP) show interesting electrical and optical properties for organic electronics as well as for life science applications. Their possibilities of supramolecular assembly with nanowire like misfolded proteins, amyloids, as well as synthetic polypeptides or DNA forming conducting nano composites is highly interesting as being a truly bottom up approach for fabrication of OLEDs, photovoltaic’s as well as logic devices. A special class of CPs is that of electroactive cojugated polymers (ECPs), which, due to their structure, will exhibits a unique combination of properties, including the following; electrically conducting, ability to store an electric charge and ability to exchange ions. The positive or negative excess charge can be introduced into the conjugated polymer by means of chemical or electrochemical oxidation/reduction (a process called doping) following the polymerization reaction. In order to preserve overall electroneutrality of the polymer during introduction of excess charge, ionexhange processes occurs between the polymer phase and the surrounding electrolyte solution. This charge/discharge process can be utilized for application such as; pseudo super capacitors (energy storage through oxidation/reduction processes), electro mechanical actuators (convert electrical energy to mechanical energy) and sensors (converts a chemical signal to electrical conductivity). In this thesis we describes the synthetic challenges with ECPs for applications vide supra. These mostly relates to solubility, ionic functionalization, conductivity and macromolecular properties such as size and shape of the ECPs. The key requirement in the synthesis of ECPs is that the conjugated nature of the monomer is conserved in the synthesis process and that insertion of excess charge (doping) can be obtained. This limits both the choice of monomer and the choice of polymerization process. Monomers of great complexity have been synthesized with this careful goal in mind. Furthermore, the development of novel monomers must also target the appropriate functionality for polymerization. As such, most ECP monomers are electron-rich molecules with pendant groups containing pyrroles, thiophenes, or 3,4-ethylenedioxythiophenes. These three well known ECP monomers are excellent additions to conjugated systems as they typically enable electrochemical polymerization and direct the polymerizations toward linear polymers with good stability towards doping. The first topic of this thesis we demonstrate how we can obtain water soluble ECPs with good electrical conductivity by controlling the polymerization techniques and proper ionic functionalization of the monomer. We also show how these polymers can be incorporated by self-assembly with biomolecular templates, such as, DNA and amyloid fibrils, thus generating novel electrically conductive nanowires. The second topics of this thesis demonstrate how hydrogels of ECPs can be used as bioand charge storage materials, were we demonstrate electronically controlled cell release for biology applications. Both applications are based on ECPs ability to ionexhange processes during electrochemical redox reactions. As well as ions, solvent and other neutral molecules may enter the film during charge/discharge processes. This cause a swelling or shrinking of the ECP films and the expansion and contraction of the polymer network in conjugation with the sorption/desorption of solvent molecules and ions can be described in terms of mechanical work. In the first case we were able to synthesize a water soluble ECP with high amphiphilic character. The polymer was immobilized onto a flexible electrode, suitable for cell growth and subjected to a cell growth media. When the desired cell layer was formed we applied a potential to the flexible electrode. This resulted in that the mechanical work of the immobilized ECP during the applied potential overcame the week adhesive forces to the flexible electrode, which resulted in super swelling and disintegration of the ICP and the cell layer could be harvested. In the second case the possibilities of using synthetically modified ECPs as a dopant during electropolymerization of another ECP monomer to obtain a polymer integrated network with high charge density and good charge transport properties. We demonstrate how this polymer network can be used as porous electrodes suitable for supercapacitors.
2

Microcontact printing of antibodies in complex with conjugated polyelectrolytes

von Post, Fredrik January 2007 (has links)
<p>Microcontact printing using elastomeric stamps is a technique used in finding new and efficient ways to produce biodetection chips. Microcontact printed, with poly(dimetylslioxane) (PDMS) stamps, patterns of antibodies have been evaluated using fluorescence microscopy, imaging ellipsometry and atomic force microscopy. Fluorescent conjugated polyelectrolytes form non-covalent molecular complexes with Immunoglobulin-γ type antibodies, antigen binding to the tagged antibody result in spectroscopic shifts. Four different conjugated polyelectrolytes (POWT, POMT, PTT, PTAA) in complex with human serum albumin antibodies (aHSA) have been tested with fluorescence spectroscopy. Complexes of POWT and aHSA gave rise to thelargest wavelength shift when exposed to human serum albumin.</p><p>Several types of commercially available fluorescent antibodies and antigens were used to test the specificity of microcontact printed antibodies to different antigen solutions. Using fluorescence microscopy it could not be shown that printed antibody patterns promote specific adsorption of corresponding antigen. It is proposed however that changed surface characteristics of the substrate due to PDMS residues transferred during printing is the main driving force behind antigen adsorption.</p><p>POMT - poly (3-[(s)-5-amino-5-methoxylcarboxyl-3-oxapentyl]-2,5-thiophenylenehydrochloride)</p><p>POWT - poly (3-(s)-5-amino-5-carboxyl-3-oxapentyl]-2,5-thiophenylenehydrochloride)</p><p>PTAA - polytiophene acetic acid</p><p>PTT - poly (3-[2,5,8-trioxanonyl] thiophene)</p>
3

Microcontact printing of antibodies in complex with conjugated polyelectrolytes

von Post, Fredrik January 2007 (has links)
Microcontact printing using elastomeric stamps is a technique used in finding new and efficient ways to produce biodetection chips. Microcontact printed, with poly(dimetylslioxane) (PDMS) stamps, patterns of antibodies have been evaluated using fluorescence microscopy, imaging ellipsometry and atomic force microscopy. Fluorescent conjugated polyelectrolytes form non-covalent molecular complexes with Immunoglobulin-γ type antibodies, antigen binding to the tagged antibody result in spectroscopic shifts. Four different conjugated polyelectrolytes (POWT, POMT, PTT, PTAA) in complex with human serum albumin antibodies (aHSA) have been tested with fluorescence spectroscopy. Complexes of POWT and aHSA gave rise to thelargest wavelength shift when exposed to human serum albumin. Several types of commercially available fluorescent antibodies and antigens were used to test the specificity of microcontact printed antibodies to different antigen solutions. Using fluorescence microscopy it could not be shown that printed antibody patterns promote specific adsorption of corresponding antigen. It is proposed however that changed surface characteristics of the substrate due to PDMS residues transferred during printing is the main driving force behind antigen adsorption. POMT - poly (3-[(s)-5-amino-5-methoxylcarboxyl-3-oxapentyl]-2,5-thiophenylenehydrochloride) POWT - poly (3-(s)-5-amino-5-carboxyl-3-oxapentyl]-2,5-thiophenylenehydrochloride) PTAA - polytiophene acetic acid PTT - poly (3-[2,5,8-trioxanonyl] thiophene)
4

Charge transport in mix-conducting hetero-ionic junctions of polyacetylene ionomers

Lin, Fuding, 1975- 06 1900 (has links)
xvii, 159 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / Experimental studies on mix-conducting hetero-ionic junctions of anionically (PA A ) and cationically (PA C ) functionalized polyacetylene ionomers, as well as each individual ionomer, in thin-film sandwich configurations are reported for the purpose of better understanding the interaction between ionic and electronic charge transports in mixed ionic-electronic conductor (MIEC) systems. The transport of ions in both individual ionomers as well as their hetero-ionic junction was investigated via small-amplitude AC impedance spectroscopy in the absence of significant interference from the electronic charge transport. Modeling of the impedance results reveal important information about the materials such as: ion conductivity, activation energy of ion conduction, ion hopping frequency, dielectric constant, interfacial capacitance, and estimates of effective ion density. Electrochemical injection of electronic charge carriers into PA A and PA C from gold electrodes was monitored to determine the applied potentials needed to drive hole and electron injection into each ionomer. It is found that for both ionomers, the onset voltages for unipolar and bipolar charge injection are similar, and holes can be injected at close to zero bias. The responses of the complete Au|PA A |PA C |Au hetero-ionic junction, as well as each constituent ionomer layer in Au|Ionomer|Au configuration, to various stepping biases were investigated through current-voltage and impedance measurements to study the origin of the asymmetric current-voltage response observed in the hetero-ionic junction. Analysis of the results reveal a working mechanism of a mix-conducting junction that is fundamentally different from that of a purely electronic pn junction. When illuminated with light, the Au|PA A |PA C |Au junction exhibits unidirectional photovoltage and photocurrent with the PA A side at higher potential, while the Au|PA A |Au and Au|PA C |Au samples exhibit symmetric photoresponses. The efficiency of photocurrent generation in the Au|PA A |PA C |Au junction was found to be strongly dependent on the direction of illumination and on the sample thickness. These observations can be explained by the difference in the mobility of holes and electrons and the existence of a built-in ionic space charge region at the PA A |PA C interface. A mechanism of photoresponse unique to MIEC junctions was proposed, and the magnitude of built-in potential was estimated. / Committee in charge: J David Cohen, Chairperson, Physics; Mark Lonergan, Advisor, Chemistry; Roger Haydock, Member, Physics; David Strom, Member, Physics; David Tyler, Outside Member, Chemistry
5

Surface Modification of Carbon Nanotubes with Conjugated Polyelectrolytes: Fundamental Interactions and Applications in Composite Materials, Nanofibers, Electronics, and Photovoltaics

Ezzeddine, Alaa 10 1900 (has links)
Ever since their discovery, Carbon nanotubes (CNTs) have been renowned to be potential candidates for a variety of applications. Nevertheless, the difficulties accompanied with their dispersion and poor solubility in various solvents have hindered CNTs potential applications. As a result, studies have been developed to address the dispersion problem. The solution is in modifying the surfaces of the nanotubes covalently or non-covalently with a desired dispersant. Various materials have been employed for this purpose out of which polymers are the most common. Non-covalent functionalization of CNTs via polymer wrapping represents an attractive method to obtain a stable and homogenous CNTs dispersion. This method is able to change the surface properties of the nanotubes without destroying their intrinsic structure and preserving their properties. This thesis explores and studies the surface modification and solublization of pristine single and multiwalled carbon nanotubes via a simple solution mixing technique through non-covalent interactions of CNTs with various anionic and cationic conjugated polyelectrolytes (CPEs). The work includes studying the interaction of various poly(phenylene ethynylene) electrolytes with MWCNTs and an imidazolium functionalized poly(3-hexylthiophene) with SWCNTs. Our work here focuses on the noncovalent modifications of carbon nanotubes using novel CPEs in order to use these resulting CPE/CNT complexes in various applications. Upon modifying the CNTs with the CPEs, the resulting CPE/CNT complex has been proven to be easily dispersed in various organic and aqueous solution with excellent homogeneity and stability for several months. This complex was then used as a nanofiller and was dispersed in another polymer matrix (poly(methyl methacrylate), PMMA). The PMMA/CPE/CNT composite materials were cast or electrospun depending on their desired application. The presence of the CPE modified CNTs in the polymer matrix has been proven to enhance the composites thermal, mechanical and electrical properties compared to pristine CNTs. Various spectroscopic and microscopic techniques such as UV-vis, fluorescence, TEM, AFM and SEM were used to study and characterize the CPE/CNT complexes. Also, TGA, DSC and DMA were used to study the thermal and mechanical properties of the composite materials. Our current work represents a fundamental study on the non-covalent interactions between CNTs and CPEs on one hand and gives a real life example on the CPE/CNT application in composite materials and electronics.
6

Light interactions in flexible conjugated dyes

Sjöqvist, Jonas January 2014 (has links)
In this thesis methodological developments have been made for the description of flexible conjugated dyes in room temperature spectrum calculations. The methods in question target increased accuracy and efficiency by combining classical molecular dynamics (MD) simulations with time-dependent response theory spectrum calculations. For absorption and fluorescence spectroscopies a form of conformational averaging is used, where the final spectrum is obtained as an average of spectra calculated for geometries extracted from ground and excited state MD simulations. For infrared and Raman spectroscopies averaged spectra are calculated based on individual spectra, obtained for zero-temperature optimized molecular structures, weighted by conformational statistics from MD trajectories. Statistics for structural properties are also used in both cases to gain additional information about the systems, allowing more efficient utilization of computational resources. As it is essential that the molecular mechanics description of the system is highly accurate for methods of this nature to be effective, high quality force field parameters have been derived, describing the molecules of interest in either the MM3 or CHARMM force fields. These methods have been employed in the study of three systems. The first is a platinum(II) actylide chromophore used in optical power limiting materials, for which a ultraviolet/visible absorption spectrum has been calculated. The second is a family of molecular probes called luminescent conjugated oligothiophenes, used to detect and characterize amyloid proteins, for which both absorption and fluorescence spectra have been calculated. Finally, infrared and Raman spectra have been calculated for a group of branched oligothiophenes used in organic solar cells. In addition, solvation effects have been studied for conjugated poly\-eletrolytes in water, resulting in the development of two solvation models suitable for this class of molecules. The first uses a quantum meachanics/molecular mechanics (QM/MM) description, in which the solute mole\-cule is described using accurate quantum mechanical methods while the surrounding water molecules are described using point charges and polarizable point dipoles. The second discards the water entirely and removes the ionic groups of the solute. The QM/MM model provides highly accurate results while the cut-down model gives results of slightly lower quality but at a much reduced computational cost. Finally, a study of protein-dye interactions has been performed, with the goal of explaining changes in the luminescence properties of the LCO chromophores when in the presence of amyloid proteins. Results were less than conclusive.
7

Iontové polymery a polymerní sítě polyacetylenického typu připravené metodou kvaternizační polymerizace / Ionic polyacetylene type polymers and polymer networks by catalyst-free quaternization polymerization

Faukner, Tomáš January 2016 (has links)
(Doctoral Thesis, 2016, Mgr. Tomáš Faukner, IONIC POLYACETYLENE TYPE POLYMERS AND POLYMER NETWORKS BY CATALYST FREE QUATERNIZATION POLYMERIZATION) The composition and structure of a series of ionic π-conjugated poly(monosubstituted acetylene)s prepared via catalyst-free quaternization polymerization (QP) of 2-ethynylpyridine (2EP) activated with equimolar amount of alkyl halide [RX = ethyl bromide, ethyl iodide, nonyl bromide and haxadecyl (cetyl) bromide] as a quaternizing agent (QA) have been studied in detail. The performed QPs gave ionic polymers well soluble in polar solvents, with approximately half of pyridine rings quaternized, which implies that also non-quaternized monomers were involved in the process of QP. The configurational structure of polyacetylene main chains was suggested based on 1 H NMR, IR as well as Raman (SERS) spectral methods. The QPs in bulk gave more expected irregular cis/trans polymers while the QPs in acetonitrile solution gave high-cis polymers. A series of prepared symmetrical bi-pyridylacetylene based monomers has been polymerized via QP approach resulting into a series of new ionic π-conjugated poly(disubstituted acetylene) type materials. It is therefore obvious that the mechanism of quaternization activation frequently applied on monosubstituted...

Page generated in 0.0704 seconds