Spelling suggestions: "subject:"mixed ionicelectronic conductors"" "subject:"mixed contraelectronic conductors""
1 |
Injection, Transport, and Ionic Interactions of Carriers in Polyacetylene Ionomers as Probed by Near-Infrared Absorbance and Visible PhotoresoponseWalker, Ethan 18 August 2015 (has links)
While mixed ionic-electronic conductors (MIECs) show promise in a number of different device structures, their successful application has been inhibited by difficulties with characterization. The simultaneous influence of both ionic and electronic systems often foils attempts to quantify material parameters important for rational device design. In many cases, even general models of MIEC function can prove uncertain or controversial.
This dissertation addresses the broader issue of ambiguity in MIEC characterization by exploring near-infrared absorbance as a method of gaining further insight into these systems. In combination with a traditional suite of techniques, this method enables determination of parameters not otherwise accessible. The determination of a concentration-dependant carrier mobility in an MIEC material will be demonstrated, and MIEC conduction in the unipolar regime will be broadly described as a system of electrochemically-supported charge injection. This model will be subsequently expanded to describe an unusual and previously unreported phenomenon of rectification when MIECs are interfaced with otherwise appropriate semiconducting contacts. A model labeled as extracting-electrode space-charge limited current will be described and experimentally demonstrated. Finally, the unique photovoltaic properties of an ionic heterojunction system comprising two MIECs will be examined. The results will be used to gain insight into the role of ionic asymmetry in the behavior of MIEC interfaces.
This dissertation contains coauthored, previously published, and unpublished work.
|
2 |
Charge transport in mix-conducting hetero-ionic junctions of polyacetylene ionomersLin, Fuding, 1975- 06 1900 (has links)
xvii, 159 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / Experimental studies on mix-conducting hetero-ionic junctions of anionically (PA A ) and cationically (PA C ) functionalized polyacetylene ionomers, as well as each individual ionomer, in thin-film sandwich configurations are reported for the purpose of better understanding the interaction between ionic and electronic charge transports in mixed ionic-electronic conductor (MIEC) systems.
The transport of ions in both individual ionomers as well as their hetero-ionic junction was investigated via small-amplitude AC impedance spectroscopy in the absence of significant interference from the electronic charge transport. Modeling of the impedance results reveal important information about the materials such as: ion conductivity, activation energy of ion conduction, ion hopping frequency, dielectric constant, interfacial capacitance, and estimates of effective ion density.
Electrochemical injection of electronic charge carriers into PA A and PA C from gold electrodes was monitored to determine the applied potentials needed to drive hole and electron injection into each ionomer. It is found that for both ionomers, the onset voltages for unipolar and bipolar charge injection are similar, and holes can be injected at close to zero bias.
The responses of the complete Au|PA A |PA C |Au hetero-ionic junction, as well as each constituent ionomer layer in Au|Ionomer|Au configuration, to various stepping biases were investigated through current-voltage and impedance measurements to study the origin of the asymmetric current-voltage response observed in the hetero-ionic junction. Analysis of the results reveal a working mechanism of a mix-conducting junction that is fundamentally different from that of a purely electronic pn junction.
When illuminated with light, the Au|PA A |PA C |Au junction exhibits unidirectional photovoltage and photocurrent with the PA A side at higher potential, while the Au|PA A |Au and Au|PA C |Au samples exhibit symmetric photoresponses. The efficiency of photocurrent generation in the Au|PA A |PA C |Au junction was found to be strongly dependent on the direction of illumination and on the sample thickness. These observations can be explained by the difference in the mobility of holes and electrons and the existence of a built-in ionic space charge region at the PA A |PA C interface. A mechanism of photoresponse unique to MIEC junctions was proposed, and the magnitude of built-in potential was estimated. / Committee in charge: J David Cohen, Chairperson, Physics;
Mark Lonergan, Advisor, Chemistry;
Roger Haydock, Member, Physics;
David Strom, Member, Physics;
David Tyler, Outside Member, Chemistry
|
3 |
Preparation and performance of BSCF-based Mixed Ionic-Electronic Conducting (MIEC) ceramicsLu, Huanghai January 2016 (has links)
Preparation and performance of the perovskite-type barium strontium cobalt iron oxide (Ba_0.5 Sr_0.5 Co_0.8 Fe_0.2 O_(3-δ), BSCF) and its doped compositions were studied in this dissertation. Three transition metals (copper, nickel and niobium) were substituted into the parent BSCF at various ratios to create the formula Ba_0.5 Sr_0.5 (Co_0.8 Fe_0.2)_(1-x) M_x O_(3-δ) (0.02≤x≤0.30; M=Cu,Ni or Nb). Two synthetic methods (solid-state reaction and wet chemical co-precipitation) were developed for the preparation of starting powders. In the previous reports [1, 2], BSCF ceramics suffered from insufficient densification and severe cracking; these problems were resolved in this study by optimising the ceramic processing conditions. The phase transition sequences from starting powders to single-phase cubic perovskite were studied by SEM, XRD, TGA, EDS and Raman spectroscopy. The powders prepared by solid-state method were found to require higher calcination temperature to form pure perovskite phase, and an extra intermediate structure (Ba,Sr)Fe_2 O_4 was detected in the reaction sequence. The materials performance was examined from five aspects: thermal stability, chemical stability, oxygen permeability, electronic conductivity and mechanical performance. The secondary phases of thermal/chemical degradation were investigated, and a needle-like intragranular precipitate was originally discovered in this work. It was discovered that the niobium substitution could significantly improve BSCF’s thermal stability and chemical stability. The oxygen permeability and mechanical performance were also improved by niobium when the substitution ratios are small (< 10%). Although the electronic conductivity was lowered by niobium substitution as a trade-off, it does not become a drawback to restrict the materials’ potential applications as mixed ionic-electronic conductors (MIEC).Furthermore, the material system’s “composition - lattice structure - performance” relationships were systematically investigated in this work; the oxygen deficiency value (δ) and the average bond energy (ABE) were found to have strong correlations with the materials performance.
|
4 |
Characterisation of Poly(trimethylene carbonate) and f-BTI2g-TVTCN blends for the use in Biosensors / Karakterisering av poly(trimetylenkarbonat) och f-BTI2g-TVTCN blandningar för användning inom biosensorerEl Ghamri, Sara, Kammeby, Ed, Göransson, Herman, Stjerngren, Arvid January 2023 (has links)
This report aims to study the degradation of poly(trimethylene carbonate) (PTMC) caused by the enzyme carboxylesterase in vitro. As well as to characterise polymer blends of f-BTI2g-TVTCN and poly(3-hydroxybutyric acid) as core components for organic electrochemical transistors (OETCs). This is to assess the suitability of these polymers in biodegradable biosensors. The degradation study of PTMC showed a lack of degradation in contrast to previous studies performed on the material; previous studies recorded a mass loss of between (5-8)% after two months. The cause for this discrepancy is still unknown but the evidence points to both systematic faults in the gravimetric analysis as well as random errors found in the equipment. The OECT showed that increasing the PHB fraction in the polymer blend resulted in a higher output. The most stable device consisted of a 1:6 blend of f-BTI2g-TVTCN to PHB. Fewer tests were conducted on the 1:10 blend because two devices were damaged during the experiment. The statistical impact of the smaller sample size cannot be overstated so further testing should be conducted to verify the results.
|
5 |
Perovskite-related and trigonal RBaCo₄O₇-based oxide cathodes for intermediate temperature solid oxide fuel cellsKim, Young Nam, 1974- 06 February 2012 (has links)
Solid oxide fuel cells (SOFCs) offer the advantages of (i) employing less expensive catalysts compared to the expensive Pt catalyst used in proton exchange membrane fuel cells and (ii) directly using hydrocarbon fuels without requiring external fuel reforming due to the high operating temperature. However, the conventional high operating temperatures of 800 - 1000 °C lead to interfacial reactions and thermal expansion mismatch among the components and limitations in the choice of electrode and interconnect materials. These problems have prompted a lowering of the operating temperature to an intermediate range of 500 - 800 °C, but the poor oxygen reduction reaction kinetics of the conventional La[subscript 1-x]Sr[subscript x]MnO₃ perovskite cathode remains a major obstacle for the intermediate temperature SOFC. In this regard, cobalt-containing oxides with perovskite or perovskite-related structures have been widely investigated, but they suffer from large thermal expansion coefficient (TEC) mismatch with the electrolytes. With an aim to lower the TEC and maximize the electrochemical performance, this dissertation focuses on perovskite-related and trigonal RBaCo₄O₇-based oxide cathode materials. First, the effect of M = Fe and Cu in the perovskite-related layered LnBaCo₂₋xMxO₊[delta] (Ln = Nd and Gd) oxides has been investigated. The Fe and Cu substitutions lower the polarization resistance and offer fuel cell performance comparable to that of La[subscript 1-x]Sr[subscript x]CoO₃₋[delta] perovskite due to improved chemical stability with the electrolyte and a better matching of the TEC with those of standard electrolytes. Second, the perovskite-related intergrowth oxides Ln(Sr,Ca)₃Fe₁.₅Co₁.₅O₀ and La₁.₈₅Sr₁.₁₅Cu[subscript 2-x]Co[subscript x]O[subscript 6 +delta] and their composites with gadolinia-doped ceria (GDC) have been investigated. The electrical conductivity, TEC, and catalytic activity increase with increasing Co content. The composite cathodes exhibit enhanced electrochemical performance due to lower TEC and increased triple-phase boundary. Third, RBa(Co,Zn)₄O₇ (R = Y, Ca, and In) oxides with a trigonal structure and tetrahedral-site Con+ ions have been investigated. The chemical instability normally encountered with this class of oxides has been overcome by appropriate cationic substitutions as in (Y₀.₅Ca₀.₅)Ba(Co₂.₅Zn₁.₅)O₇ and (Y₀.₅In₀.₅)BaCo₃ZnO₇. With an ideal matching of TEC with those of standard electrolytes, the RBa(Co,Zn)₄O₇ (R = Y, Ca, and In) + GDC composite cathodes exhibit low polarization resistance and electrochemical performance comparable to that of perovskite oxides. / text
|
6 |
New solid state oxygen and hydrogen conducting materials. Towards their applications as high temperature electrochemical devices and gas separation membranesBalaguer Ramírez, María 02 September 2013 (has links)
Los materiales conductores mixtos de electrones e iones (oxígeno o
protones) son capaces de separar oxígeno o hidrógeno de los gases de combustión
o de corrientes de reformado a alta temperatura. La selectividad de este proceso
es del 100%. Estos materiales, óxidos sólidos densos, pueden usarse en la
producción de electricidad a partir de combustibles fósiles, así como formar parte
de los procesos que forman parte del sistema de captura y almacenamiento de
CO2. Las membranas de transporte de oxígeno (MTO) se pueden utilizar en las
plantas energéticas con procesos de oxicombustión, así como en reactores
catalíticos de membrana (RCM), mientras que las membranas de transporte de
hidrógeno (MTH) se aplican en procesos de precombustión. Además, estos
materiales encuentran aplicación en componentes de sistemas energéticos, como
electrodos o electrolitos de pilas de combustible de óxido sólido, de ambas clases
iónicas y protónicas (SOFC y PC-SOFC).
Los procesos mencionados implican condiciones de operación muy
severas, como altas temperaturas y grandes gradientes de presión parcial de
oxígeno (pO2), probablemente combinadas con la presencia de CO2 and SO2. Los
materiales más que mayor rendimiento de separación presentan y más
ampliamente investigados en este campo son inestables en estas condiciones. Por
tanto, existe la necesidad de encontrar nuevos materiales inorgánicos estables que
proporcionen alta conductividad electrónica e iónica.
La presente tesis propone una búsqueda sistemática de nuevos
conductores iónicos-electrónicos mixtos (MIEC, del inglés) con diferente
estructura cristalina y/o diferente composición, variando la naturaleza de los
elementos y la estequiometría del cristal. La investigación ha dado lugar a materiales capaces de transportar iones oxígeno, protones o cargas electrónicas y
que son estables en las condiciones de operación.
La caracterización de una amplia serie de cerias (CeO2) dopadas con
lantánidos proporciona una comprensión general de las propiedades estructurales
y de transporte, así como la relación entre ellas. Además, se estudia el efecto de la
adición de cobalto a dicho sistema. Se ha completado el análisis con la
optimización de las propiedades de trasporte a partir de la microestructura. Todo
esto permite hacer una clasificación inicial de los materiales basada en el
comportamiento de transporte principal y permite adecuar la estructura y las
condiciones de operación para obtener las propiedades deseadas para cada
aplicación.
Algunos de los materiales extraídos de este estudio alcanzaron las
expectativas. Las familias de materiales basadas en Ce1-x
Tbx
O2-¿
y Ce1-x
Tbx
O2-¿
+2 mol% Co proporcionan flujos de oxígeno bajos pero competitivos, ya que son
estables en atmósferas con CO2. Además, la inclusión de estos materiales en
membranas de dos fases aumenta el flujo de oxígeno. La combinación con una
espinela libre de cobalto y de metales alcalinotérreos como es el Fe2
NiO4, ha
dado lugar a un material prometedor en cuanto a flujo de oxígeno y estabilidad en
CO2 y en SO2, que podría ser integrado en el proceso de oxicombustión.
Por otra parte, se ha añadido metales como codopantes en el sistema
Ce0.9-x
Mx
Gd0.1O1.95. Estos materiales, en combinación con la perovskita La1-
x
Srx
MnO3 usada comúnmente como cátodo de SOFC, han sido capaces de
disminuir la resistencia de polarización del cátodo. La mejora es consecuencia de
la introducción de conductividad iónica por parte de la ceria.
Las perovskitas dopadas basadas en CaTiO3 forman el segundo grupo de
materiales investigados. La dificultad de obtener perovskitas estables y que presenten conducción mixta iónica y electrónica se ha hecho evidente. De entre
los dopantes utilizados, el hierro y la combinación hierro-magnesio han sido los
mejores candidatos. Ambos materiales presentan conductividad principalmente
iónica a alta temperatura, mientras que a baja predomina la conductividad
electrónica tipo p. CaTi0.73Fe0.18Mg0.09O3-¿ se ha mostrado como un material
competente en la fabricación de membranas de oxígeno, que proporciona flujos
adecuados a la par que estabilidad en CO2.
Finalmente, la perovskita La0.87Sr0.13CrO3 (LSC) ha sido dopada con el
objetivo de aumentar la conductividad mixta protónica electrónica. Este estudio
ha llevado al desarrollo de una nueva generación de ánodos para PC-SOFC
basadas en electrolitos de LWO. Las perovskitas dopadas con Ce en el sitio del
La (LSCCe) y con Ni en el sitio del Cr (LSCN) son estables en condiciones de
operación reductoras, así como en contacto con el electrolito. El uso de ambos
materiales como ánodo disminuye la resistencia de polarización con respecto al
LSC. El LSCCe está limitado por los procesos que ocurren a baja frecuencia
(BF), relacionados con los procesos superficiales, y que son atenuados en el caso
del LSCN debido a la formación de nanopartículas de Ni metálico en la
superficie. La infiltración posterior con nanopartículas de Ni permite disminuir la
resistencia a BF lo que sugiere que la reacción superficial de oxidación del H2
está siendo catalizada. La infiltración más concentrada en Ni (5Ni) elimina
completamente la resistencia a BF en ambos ánodos, de forma que los procesos
que ocurren a altas frecuencias son ahora limitantes. El ánodo constituido por
LSCNi20+5Ni dio una resistencia de polarización de 0.26 ¿·cm
2
at 750 ºC en H2
húmedo. / Mixed ionic (oxygen ions or protons) and electronic conducting materials
(MIEC) separate oxygen or hydrogen from flue gas or reforming streams at high
temperature in a process 100% selective to the ion. These solid oxide materials
may be used in the production of electricity from fossil fuels (coal or natural gas),
taking part of the CO2 separation and storage system. Dense oxygen transport
membranes (OTM) can be used in oxyfuel combustion plants or in catalytic
membrane reactors (CMR), while hydrogen transport membranes (HTM) would
be applied in precombustion plants. Furthermore, these materials may also be
used in components for energy systems, as advanced electrodes or electrolytes for
solid oxide fuel cells (SOFC) and proton conducting solid oxide fuel cells (PCSOFC)
working at high and moderate temperature.
The harsh working conditions stablished by the targeted processes
include high temperatures and low O2 partial pressures (pO2), probably
combined with CO2 and SO2 containing gases. The instability disadvantages
presented by the most widely studied materials for these purposes make them
impractical for application to gas separation. Thus, the need to discover new
stable inorganic materials providing high electronic and ionic conductivity is
still present.
This thesis presents a systematic search for new mixed ionic-electronic
conductors. It includes different crystalline structures and/or composition of the
crystal lattice, varying the nature of the elements and the stoichiometry of the
crystal. The research has yielded new materials capable to transport oxygen ions
or protons and electronic carriers that are stable in the working condition to
which they are submitted. / Balaguer Ramírez, M. (2013). New solid state oxygen and hydrogen conducting materials. Towards their applications as high
temperature electrochemical devices and gas separation membranes [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31654 / Premios Extraordinarios de tesis doctorales
|
7 |
ORGANIC ELECTROCHROMIC MATERIALS AND DEVICES: OPTICAL CONTRAST AND STABILITY CONSIDERATIONSKuluni Perera (15351412) 25 April 2023 (has links)
<p> In an era of advancing printed electronics, solution-processable organic semiconductors continue to make significant strides in electronic and optoelectronic applications. Electrochromic (EC) technology, which encompass reversible optical modulation under electrochemical biasing, has progressed rapidly over the past half-century and developed into niche commercial-scale devices for auto-tinting glasses as well as low-power, non-emissive displays. To utilize the advantages of organic electrochromic materials in next-generation devices, it is imperative to understand their fundamental material properties, interactions with other device components, and the underlying electrochemistry that governs the overall optical and electrochemical response of the complete electrochromic device. This dissertation presents a discussion on the synergistic role of organic electrochromes, charge-balancing layers and electrolytes in determining two key performance metrics, namely the optical contrast and operational stability, of an electrochromic device (ECD). The absorption features of colored-to-transmissive switching conjugated polymers have been investigated by exploring material design strategies in conjunction with analytical approaches to optimize and enhance the optical contrast. In parallel, transmissive redox-active radical polymer counter electrodes have been developed as compatible charge-balancing layers and integrated into devices by pairing with electrochromic polymers (ECPs) to achieve stable and high-contrast optical modulation. Electrochemical activity of both conjugated and radical polymer electrodes in different ionic and solvent environments have been further examined to understand material-electrolyte interactions governing mixed ionic-electronic conduction. Finally, a small molecular approach to realizing transparent-to-colored electrochromism is discussed, where distinct substituent-induced degradation pathways of conjugated radical cations were revealed. Overall, this research aims to assist future development of robust, ultra-high contrast organic electrochromic platforms. </p>
|
Page generated in 0.12 seconds