• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 9
  • 9
  • 9
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hierarchy and Sustainability: Investigating the Use of Adhesives in a Petroleum-Dependent World Through the Lens of Natural Materials

Clayton R Westerman (18360096) 12 April 2024 (has links)
<p dir="ltr">Adhesives surround us on a daily basis without us even being aware. They are the unsung heroes of most commercial products we use. Whether it be the car you drive, the shoes you wear, or the furniture you sit on, glue is keeping everything together. Adhesives have been used since the cavemen utilizing tar for keeping stone tools together. Over time, adhesives have exploded in the scientific landscape through a multitude of chemical pathways. Current products are comprised of epoxies, cyanoacrylates, polyurethanes, and many others. The need for adhesives in the manufacturing of products is consistently increasing over the years in the goal of light weighting without compromising on performance of the final material. However, this comes at the cost of glues being both toxic and nonrecyclable. With this in mind an improvement was needed to address both augmenting the glue strength and improving the sustainability of the adhesive.</p><p dir="ltr">Hierarchical structures can be observed on the micro scale in natural materials. Tree limbs are able to withstand a tremendous amount of force applied from winds, human machinery, and animal life. Why they are so resistant lies in the fact there is an ordered structure of multiple length scales working in tandem upholding the integrity of the limb. The question to ask then relating this to adhesives is if there is a way to create a glue that can disperse the forces amongst the overall material without catastrophic failure. The use of fillers such as calcium carbonate and different adhesive strain rates can be used to mimic this interaction.</p><p dir="ltr">Addressing the sustainability factor of current glues, the need was set to create a more bio-based alternative using widely available materials that are cost effective and do not compromise on overall performance. Competing with or outperforming the current market adhesives was a goal in mind. Two generations of bio-based adhesives were generated through multiple formulations using epoxidized soybean oil as the common factor. Soybean oil is one of the most widely produced vegetable oils in the country. Utilizing the oil in a functionalized way through epoxide rings, the replacement of current epoxy technology was achieved.</p>
2

DESIGN AND APPLICATION OF POLYMERIC MIXED CONDUCTORS

Ho Joong Kim (14002548) 25 October 2022 (has links)
<p>   Organic electronics has been a highly researched field owing to the low cost, biocompatibility, mechanical flexibility, and superior performance relative to their inorganic counterparts in some applications. Significant advancement has been achieved across various device platforms including organic light-emitting diodes (OLEDs), organic field effect transistors (OFETs), and organic solar cells, for instance. Recently, soft materials that can conduct both charge and ions simultaneously (i.e., organic mixed conductors) have been a major catalyst in the fields of biosensors and energy storage. Extensive research efforts in the organic electronics field are being invested to establish the relevant structure-property relationships to design and develop higher performing organic mixed conductors. Simultaneously, these materials are utilized in developing prototype biosensors with the aim of superior performance, lower cost, and better patient comfort and outcomes than currently available technologies. Following suit, this dissertation is dedicated to furthering organic electronics on both fundamental and applied fronts. Specifically, this work examines a novel class of redox-active macromolecules, radical polymers, as the organic electrochemical transistor (OECT) active layer. In addition, wearable ocular biosensors utilizing soft materials to realize design innovation are presented.</p> <p>   For the first part of the present dissertation, radical polymer-based blends are evaluated for mixed electron and ion conduction in OECTs. Traditional macromolecular design motifs for OECT active layer materials have been a closed-shell macromolecular backbone for electron conduction with charge-neutral hydrophilic side chains (e.g., triethylene glycol) for ion conduction. When poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl) (PTEO) is blended with poly(3-hexylthiophene) (P3HT), 2,2,6,6-tetramethylpiperidin-N-oxy (TEMPO) radicals in PTEO act as an independent voltage regulator that modulates the ionic and hence electronic transport of the OECT devices. Electrochemical analysis of the blend films reveals that the ionic transport and hence electrochemical doping of the P3HT phase occur when the applied bias matches the onset oxidation potential of TEMPO radicals in PTEO even though that of P3HT is lower than that of TEMPO oxidation. By optimizing the blend ratio, figure-of-merit (i.e., μC*) values over 150 F V–1 cm–1 s–1 at loadings as low as 5% PTEO (by weight) are achieved, placing the performance on the same order as top-performing conjugated polymers despite the mediocre performance of pristine P3HT (<10 F V–1 cm–1 s–1). These findings suggest that introduction of open-shell moieties in the OECT active layer as a secondary redox-active species may significantly improve OECT performance metrics and offer a new paradigm for future macromolecular designs.</p> <p>   In the second part of the dissertation, novel design strategies for wearable ocular electroretinography (ERG) sensors are presented. Typically, wearable sensors are custom-made contact lenses fabricated in a bottom-up fashion where the pre-fabricated sensor component is either embedded in the contact lens body or sandwiched between two. The present work instead utilizes commercially available contact lenses, and the corneal electrode is integrated via electropolymerization of poly(3,4-ethylenedioxythiophene):iron(III) p-toluenesulfonate (PEDOT:Tos) on the lens surface. Electrochemical analysis of the PEDOT:Tos reveals that the measured impedance is several orders of magnitude lower than that of noble metals (e.g., Au) used as the working electrode in commercial electrodes. The mechanical and chemical stability along with the soft form factor of the present design strategy enables high-fidelity recording of ERG signals in human subjects without the need for topical anesthesia.</p> <p>   Following the similar strategy, a new seamless wearable ocular sensor integration strategy utilizing polydopamine (PDA) conformal coating is demonstrated. In this work, we utilize its strong adhesive property originating from the van der Waals interactions between catechol moieties of PDA and various hydrophilic functional groups (e.g., hydroxy, ether, etc.) already present in commercial contact lens materials. The facile integration demonstrates high peeling strength (> 55 J m-2), chemical and mechanical stability. A series of <em>in vivo</em> assessments demonstrates high accuracy, reliability, and user comfort of the fabricated wearable sensor in both animal and human subjects. The findings suggest that the PDA-assisted integration strategy may be applied in designing various future-generation wearable ocular electrophysiological sensors.</p>
3

<strong>Optimizing pre-service heat treatments in  Ytterbium Disilicate-based Environmental barrier coatings</strong>

Dawson Michael Smith (15354691) 29 April 2023 (has links)
<p> Environmental Barrier Coatings (EBCs) protect ceramic gas turbine engine components from corrosion by high temperature water vapor, but the coatings often form complex metastable microstructures upon plasma spray deposition. In ytterbium disilicate (YbDS) and its yttrium-doped counterpart (Y/YbDS), two coatings compatible with SiC/SiC parts, plasma spray forms a largely cracked, mechanically weak amorphous phase comprising up to ~80% of the coating’s volume. Therefore, the coatings must undergo a pre-service heat treatment to crystallize into stable phases and heal cracks. During the treatment, however, interplay between thermal expansion and crystallization contraction can cause vertical cracks which expose the component to the corrosive atmosphere. Remedial treatments with long, high temperature holds (~1300 ºC) can both crystallize the coating and heal existing cracks. However, these temperatures cause unnecessary grain growth that reduces the structural integrity of the coating over its lifetime.</p> <p>Here we propose an alternate heat treatment informed by experiments and modelling that removes metastable phases, heals cracks, and reduces time at temperature to prevent significant grain growth. First, we determine crystallization and phase change kinetics by applying the Ozawa-Flynn-Wall and Vyazovkin kinetic methods to differential scanning calorimetry (DSC) data. Next, we track locations and microstructural effects of phase evolution using correlative Raman spectroscopic mapping, scanning electron microscopy (SEM), and X-Ray diffraction (XRD). We interpret the formation of three distinct phases – a major phase of stable β-YbDS, and minor phases of stable Χ2-YbMS and metastable α-YbDS – within the existing framework of kinetic theory and quantify differences in their transformations between YbDS and Y/YbDS. We find that cracks in the coating heal through the crystallization of the amorphous phase and the transformation of the metastable phase although the mechanisms remain unclear. Each phase transformation causes a bulk volumetric change which we measure using dilatometry and use to calculate delamination stresses during a simulated heat treatment. Lastly, we determine the viability of our heat treatment compared to the industry standard.</p>
4

<b>Effect of Build Height on Structural Integrity in Laser Powder Bed Fusion</b>

MohammadBagher Mahtabi Oghani (17674674) 19 December 2023 (has links)
<p dir="ltr">The process of metal additive manufacturing is characterized by the layer-by-layer construction of components, where each individual layer may be subjected to distinct thermal variations, resulting in differences in cooling rates and thermal gradients. These variations can impact the microstructure and, subsequently, mechanical properties of the final product, especially as the height of the build increases. In the present investigation, an evaluation was undertaken to ascertain the impact of build height on the structural integrity of Ti-6Al-4V samples produced using the laser powder bed fusion (LPBF) technique. The study encompassed a comprehensive examination of microstructural features, the microhardness measurement, as well as an evaluation of defect characteristics including size, location, and distribution, with respect to the build height. Tensile and fatigue tests were conducted to elucidate the potential dependence of fatigue and tensile failures on the build height. Two groups of specimens were fabricated: the first, underwent continuous fabrication, while the second involved a pause at the half height, with the process resuming after a 24-hour interval. The results of this investigation unveiled a discernible influence of the height of the build on the structural integrity of components under cyclic loading. Most fatigue specimens were observed to exhibit failure in the upper portion of the gage section with respect to the build direction. Analyses of microstructure revealed a consistent grain morphology in alignment with the build direction, and a uniform distribution of hardness throughout the build height was noted. However, for the specimens in the first group, more process-induced defects were detected within the top half of the gage section in comparison to the bottom half, while there was no noticeable difference in the distribution of defects in the second group. The results suggest that in LPBF process, as the build height is increased, there is a higher likelihood of process-induced defect formation, ultimately resulting in a reduction in structural integrity at greater build heights.</p>
5

HIGH-TEMPERATURE CONDUCTING POLYMERS

Zhifan Ke (17382937) 13 November 2023 (has links)
<p dir="ltr">Conducting polymers have garnered enormous attention due to their unique properties, including tunable chemical structure, high flexibility, solution processability, and biocompatibility. They hold promising applications in flexible electronics, renewable energies, sensing, and healthcare. Despite notable progress in conducting polymers over the past few decades, most of them still suffer from complicated synthesis routes, limited processability, low electrical conductivity, and poor ambient stability compared to their inorganic counterparts. Additionally, the susceptibility of conducting polymers to high temperatures makes them not applicable in real-life electronics. To address the challenges of developing high-performance and stable conducting polymers, we present two key approaches: dopant innovation for polymer-dopant interaction engineering and the discovery of new conjugated polymer hosts. From the perspective of dopant design, we first utilize cross-linkable chlorosilanes (C-Si) to design thermally and chemically stable conductive polymer composites. C-Si can form robust siloxane networks and simultaneously<i> </i>dope the host conjugated polymers. Besides, we have introduced a new class of dopants, namely aromatic ionic dopants (AIDs). The use of AIDs allows for the separation of doping and charge compensation, two processes involved in molecular doping, and therefore leads to highly efficient doping and thermally stable doped systems. We then provide insights into the design of novel conjugated polymer hosts. Remarkably, we have developed the first thermodynamically stable n-type conducting polymer, n-doped Poly (3,7-dihydrobenzo[1,2-b:4,5-b′]difuran-2,6-dione) (n-PBDF). n-PBDF is synthesized from a simple and scalable route, involving oxidative polymerization and reductive doping in one pot in the air. The n-PBDF ink is solution processable with excellent ink stability and the n-PBDF thin film is highly conductive, transparent, patternable, and robust. In addition, precise control over the doping levels of n-PBDF has been achieved through chemical doping and dedoping. By tuning the n-PBDF thin films between highly doped and dedoped states, the system shows controllable conductivity, optical properties, and energetics, thereby offering potential applications in a variety of organic electronics. Overall, this research advances the fundamental understanding of molecular doping and offers insights for the development of high-conductivity, stable conducting polymers with tunable properties for next-generation electronics.</p>
6

ORGANIC ELECTROCHROMIC MATERIALS AND DEVICES: OPTICAL CONTRAST AND STABILITY CONSIDERATIONS

Kuluni Perera (15351412) 25 April 2023 (has links)
<p> In an era of advancing printed electronics, solution-processable organic semiconductors continue to make significant strides in electronic and optoelectronic applications. Electrochromic (EC) technology, which encompass reversible optical modulation under electrochemical biasing, has progressed rapidly over the past half-century and developed into niche commercial-scale devices for auto-tinting glasses as well as low-power, non-emissive displays. To utilize the advantages of organic electrochromic materials in next-generation devices, it is imperative to understand their fundamental material properties, interactions with other device components, and the underlying electrochemistry that governs the overall optical and electrochemical response of the complete electrochromic device. This dissertation presents a discussion on the synergistic role of organic electrochromes, charge-balancing layers and electrolytes in determining two key performance metrics, namely the optical contrast and operational stability, of an electrochromic device (ECD). The absorption features of colored-to-transmissive switching conjugated polymers have been investigated by exploring material design strategies in conjunction with analytical approaches to optimize and enhance the optical contrast. In parallel, transmissive redox-active radical polymer counter electrodes have been developed as compatible charge-balancing layers and integrated into devices by pairing with electrochromic polymers (ECPs) to achieve stable and high-contrast optical modulation. Electrochemical activity of both conjugated and radical polymer electrodes in different ionic and solvent environments have been further examined to understand material-electrolyte interactions governing mixed ionic-electronic conduction. Finally, a small molecular approach to realizing transparent-to-colored electrochromism is discussed, where distinct substituent-induced degradation pathways of conjugated radical cations were revealed. Overall, this research aims to assist future development of robust, ultra-high contrast organic electrochromic platforms.  </p>
7

THE EFFECT OF MOLECULAR DESIGN ON SPIN DENSITY LOCALIZATION AND RADICAL-INITIATED DEGRADATION OF CONJUGATED RADICAL CATIONS

Kaelon Athena Jenkins (16613448) 19 July 2023 (has links)
<p> Radical species are essential in modern chemistry. In addition to fundamental chemistry, their unique chemical bonding and distinct physicochemical features serve critical functions in materials science in the form of organic electronics. Due to their high reactivity, radicals of the main group element are often transient. In recent years, remarkably stable radicals are often stabilized by π-delocalization, sterically demanding side groups, carbenes, and weakly coordinating anions. The impacts of modifications such as electron-donating, electron-withdrawing, and end-capping on the spin density distribution and thermodynamic and kinetic stability of archetypal radical-driven processes such as dimerization are not well understood. This dissertation aims to track the perturbation of spin density from EDG and EWG modifications, provide mechanistic insight into the radical-initiated reactions of conjugated radical cations, and establish correlations between molecular design and thermochemical properties and their resulting kinetic stability by computationally evaluating these characteristics against experimental data. The disclosed connections give useful new recommendations for the rational design of thermodynamically and kinetically stable novel materials.</p>
8

Rheology of suspension of fibers: Microscopic interaction to macroscopic rheology

Md Monsurul Islam Khan (6911054) 21 July 2023 (has links)
<p>Fibre suspensions in the fluid medium are common in industry, biology, and the environment. Industrial examples of concentrated suspensions include fresh concrete, uncured solid rocket fuel, and biomass slurries; natural examples include silt transfer in rivers and red blood cells in the blood.  These suspensions often include a Newtonian fluid as their suspending medium; still, these suspensions exhibit a plethora of non-Newtonian properties, such as yield stresses, rate-dependent rheology, and normal stresses, to name a few. Other than volume fraction, the type of fiber material, the presence of fluid-fiber or fiber-fiber interactions such as hydrodynamic, Brownian, colloidal, frictional, chemical, and/or electrostatic determine the rheological behavior of suspension. The average inter-fiber gaps between the neighboring fibers decrease significantly as the suspension volume fraction move towards a concentrated regime. As a result, in this regime, inter-fiber interactions become dominant.  Moreover, the surface asperities are present on the fiber surface even in the case of so-called smooth fibers, as fibers in real suspensions are not perfectly smooth. Hence, contact forces arising from the direct touching of the fibers become one of the essential factors in determining the rheology of suspensions.</p> <p>We first describe the causes of yield stress, shear thinning, and normal stress differences in fibre suspensions. We model the fibers as inextensible continuous flexible slender bodies with the Euler-Bernoulli beam equation governing their dynamics suspended in an incompressible Newtonian fluid. The fiber dynamics and fluid flow coupling is achieved using the immersed boundary method (IBM). In addition, the fiber surface roughness lead to inter-fiber contacts resulting in normal and tangential forces between the fibers, which follow Coulomb’s law of<br> friction. The surface roughness is modeled as hemispherical protrusions on the fiber surfaces. In addition to the comparison of the computational model to the experimental results, we demonstrate that attractive interactions lead to yield stress and shear thinning rheology.</p> <p>Furthermore, we investigate the effects of fiber aspect ratio, roughness, flexibility, and volume fraction on the rheology of concentrated suspensions. We find that the suspension viscosity increases with increasing the volume fraction, roughness, fiber rigidity, and aspect ratio. The increase in relative viscosity is the macroscopic manifestation of a similar increase  in the microscopic contact contribution with these parameters. In addition, we observe positive and negative first and second normal stress differences, respectively, in agreement with previous experiments. Lastly, we propose a modified Maron-Pierce law to quantify the the jamming volume fraction with varying fiber aspect ratio and roughness. Additionally, we provide a constitutive model to calculate the viscosity at various volume fractions, aspect ratios, and shear rates.</p>
9

SURFACE CHEMISTRY CONTROL OF 2D NANOMATERIAL MORPHOLOGIES, OPTOELECRONIC RESPONSES, AND PHYSICOCHEMICAL PROPERTIES

Jacob Thomas Lee (12431955) 12 July 2022 (has links)
<p>This dissertation describes how the surface chemistries of 2D nanomaterials can be modified to alter overall material properties. Specifically, through a focus of the ligand-surface atom bonding in addition to the overall ligand structure we highlight the ability to direct morphological outcomes in lead free halide perovskites, maximize optoelectronic responses in substoichiometric tungsten oxide, and alter physicochemical properties titanium carbide MXenes.   </p>

Page generated in 0.136 seconds