• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

<b>Growth, Integration, and Transfer of Strained Multiferroic Bismuth-Based Oxide Thin Films</b>

James P Barnard (18530610) 05 June 2024 (has links)
<p dir="ltr">Thin film materials are used in many areas of our daily lives. From memory storage chips to optical coatings, these thin films are essential to the technologies on which we rely. Multiferroic thin films, a group of materials that simultaneously exhibit ferromagnetism and ferroelectricity, are of particular interest because of the new opportunities that they enable in memory storage and sensors. Bismuth-based oxide materials have proven to be excellent candidates for these applications, with multiferroic properties and anisotropic structures. This novel self-assembled structure found in layered supercell systems has applications in optical devices, such as isolators and beamsplitters. Throughout this study, thin film strain and epitaxy must be tended to as the fundamentals of film growth, adding to the complexity of these challenges.</p><p dir="ltr">In this dissertation, bismuth-based oxides, and more specifically the Bi<sub>3</sub>Fe<sub>2</sub>Mn<sub>2</sub>O<sub>x</sub> (BFMO) layered supercell phase, are studied from three perspectives. First, BFMO is integrated onto silicon substrates for commercialization using a complex buffer layer stack to mediate the differences in the crystal lattice. This allows for a demonstration of device fabrication with this film. Second, the growth and impact of strain are examined through geometric phase analysis, discovering that strain is essential for the growth of the supercell phase in BFMO. This strain can be tuned through buffer layer addition to optimize the growth of this phase. Third, two methods are demonstrated to free the BFMO material from the typical film-substrate lattice matching requirements. The process of transferring the film from the original substrate onto a different substrate removes these restrictions, allowing virtually unlimited access to applications that were previously not possible. The two methods demonstrate different solutions to the specific challenges of transferring the highly strained BFMO thin film. These findings pave a practical way to integrate multiferroic layered oxide thin films onto chips for the next generation of devices.</p>
2

Adding a novel material to the 2D toolbox

Büchner, Christin 18 July 2016 (has links)
Die Sammlung der zwei-dimensionalen (2D) Materialien ist begrenzt, da sehr wenige Verbindungen stabil bleiben, sobald sie nur aus Oberflächen bestehen. Aufgrund ihrer außergewöhnlichen Eigenschaften sind 2D Materialien jedoch nach wie vor überaus begehrt. Vor kurzem wurden atomar definierte, chemisch gesättigte SiO2 Bilagen auf verschiedenen Metalloberflächen präpariert. Eine solche ultradünne Silika-Lage wäre eine vielversprechende Ergänzung zur Familie der 2D Materialien, wenn sie unter Strukturerhalt vom Wachstumssubstrat isoliert werden kann. In dieser Arbeit untersuchen wir die Eigenschaften einer Silika-Bilage im Zusammenhang mit Anwendungen von 2D Materialien. Die Bilage besitzt kristalline und amorphe Regionen, die beide atomar glatt sind. Die kristalline Region besitzt ein hexagonales Gitter mit gleichmäßiger Porengröße, während die amorphe Region einer komplexeren Beschreibung bedarf. In einer Studie von Baublöcken zeigen wir, dass mittelreichweitige Struktureinheiten in Korrelation mit einem Parameter für die Bindungswinkelfrustration auftreten. Das Netzwerk verschiedener Nanoporen stellt eine größenselektive Membran dar, wie wir in einer Adsorptionsstudie zeigen. Pd- und Au-Atome durchdringen den Silikafilm abhängig von der Größe der zur Verfügung stehenden Nanoporen. Der ultradünne Film hält der Einwirkung verschiedener Lösungsmittel stand und die Beständigkeit der Struktur in Wasser wird analysiert. Diese Studien deuten die außergewöhnliche Stabilität dieser Struktur an. Wir entwickeln eine polymerbasierte mechanische Exfoliation, um den Film von seinem Wachstumssubstrat zu entfernen, und zeigen, dass der Film als intakte Einheit vom Substrat abgelöst wird. Wir präsentieren anschließend den Transfer des Silikafilms auf ein TEM-Gitter, wo er schraubenartig gewundene Formen annimmt. Weiterhin wurde der Film auf ein Pt(111)-Substrat transferiert. In diesem Fall wird unter Erhalt der Struktur ein Transfer in der Größenordnung von Millimetern erreicht. / The library of two-dimensional (2D) materials is limited, since only very few compounds remain stable when they consist of only surfaces. Yet, due to their extraordinary properties, the hunt for new 2D materials continues. Recently, an atomically defined, self-saturated SiO2 bilayer has been prepared on several metal surfaces. This ultrathin silica sheet would be a promising addition to the family of 2D materials, if it can be isolated from its growth substrate without compromising its structure. In this work, we explore the properties of a silica bilayer grown on Ru(0001) in the context of 2D technology applications. The bilayer sheet exhibits crystalline and amorphous regions, both being atomically flat. The crystalline region possesses a hexagonal lattice with uniform pore size, while the amorphous region requires a more complex description. In a building block study of the amorphous region, we find that medium range structural patterns correlate with a parameter describing the bond angle frustration. The resulting network of different nanopores represents a size-selective membrane, as illustrated in an adsorption study. Pd and Au atoms are shown to penetrate the silica film selectively, depending on the presence of appropriately sized nanopores. The ultrathin silica film is shown to withstand exposure to different solvents and the stability of the structure in water is analyzed. These studies indicate extraordinary stability of this nanostructure. We develop a polymer assisted mechanical exfoliation method for removing the film from the growth substrate, providing evidence that the film is removed as an intact sheet from the growth substrate. We subsequently present the transfer of the silica bilayer to a TEM grid, where it forms micro-ribbons. Further, the film is transferred to a Pt(111) substrate, where mm-scale transfer under retention of the structure is achieved.

Page generated in 0.0878 seconds