• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desenvolvimento de materiais catódicos para células a combustível de óxido sólido (SOFC)

Sá, Anderson Moreira 29 April 2016 (has links)
Submitted by Márcio Maia (marciokjmaia@gmail.com) on 2016-08-08T12:30:12Z No. of bitstreams: 1 arquivototal.pdf: 1568585 bytes, checksum: a2238a4716a4526680dc4b1d96c2e0b7 (MD5) / Made available in DSpace on 2016-08-08T12:30:12Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1568585 bytes, checksum: a2238a4716a4526680dc4b1d96c2e0b7 (MD5) Previous issue date: 2016-04-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Fuel cells (FC) are electrochemical devices that convert chemical energy from certain fuels into electrical energy, through oxidation-reduction reactions. They have a basic structure consisting of an electrolyte layer intercalating two electrodes: the cathode (positive electrode) and anode (negative electrode). In this work, cathode materials for solid oxide fuel cells (SOFC) were developed, such as lanthanum cobaltite doped with strontium and iron (La0,6Sr0,4Co0,2Fe0,8O3-8-LSCF6428) was synthesized by the modified polymeric precursors method, also known as modified Pechini method and compared the performance with the composite electrodes La0,6Sr0,4Co0,2Fe0,8O3-8/Ce0,9 Gd0,1O2-8 (LSCF6428/ CGO) and La0,6Sr0,4Co0,2Fe0,8O3-8/Ce0,9Gd0,1O2-8/Prox (LSCF6428/CGO/PROX). The method of synthesis consists in the use of commercial gelatin as polymerizing agent for metal ions. The powder obtained at 350 ° C / 2h was calcined at 800 and 1000 ° C / 4h and characterized by thermal gravimetric analysis (TG), particle size distribution, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The films of (LSCF6428), (LSCF6428 / CGO) and (LSCF6428 / CGO / PROX) were obtained by serigraph of calcined powders at 1000 ° C. The films were deposited on ceria substrates doped with gadolinia Ce0,9Gd0,1O2-8(CGO), sintered at 1150°C and characterized by impedance spectroscopy (in pure oxygen) between 600 and 800°C. The obtained results indicated that the method used was efficient in the formation of porous powders and with the perovskite crystalline structure. The crystallite size for the composite of LSCF6428 / CGO was of 336 (nm) for the LSCF6428 and 98 (nm) for the CGO, being also the expected for a powder calcined at 1000 ° C. The value of the area specific resistance (ASR) for the electrode of pure LSCF6428 at 750 ° C was of 0.25 ohms.cm2 quite plausible, especially because it was not made use of platinum, for the LSCF/CGO/ Prox was obtained an ASR of 0.02 ohms.cm2 at 750 ° C. / As células a combustível (CaC) são dispositivos eletroquímicos que transformam a energia química de determinados combustíveis em energia elétrica, por meio de reações de oxirredução. Possuem uma estrutura básica que consiste em uma camada de eletrólito intercalando dois eletrodos: cátodo (eletrodo positivo) e anodo (eletrodo negativo). Neste trabalho, foram desenvolvidos materiais catódicos para células a combustíveis de óxidos sólidos (SOFC), tais como, a cobaltita de lantânio dopada com estrôncio e ferro (La0,6Sr0,4Co0,2Fe0,8O3-δ – LSCF6428) foi sintetizado pelo método dos precursores poliméricos modificado, também conhecido como Pechini modificado e comparado o desempenho com o de eletrodos compósitos La0,6Sr0,4Co0,2Fe0,8O3-δ/Ce0,9Gd0,1O2-δ (LSCF6428/CGO) e La0,6Sr0,4Co0,2Fe0,8O3-δ/ Ce0,9Gd0,1O2-δ/PrOx (LSCF6428/CGO/PrOx). O método de síntese consiste na utilização da gelatina comercial como agente polimerizante para íons metálicos. O pó obtido a 350 °C/ 2h foi calcinado a 800 e 1000 °C/ 4h e caracterizados por analise termogravimétrica (TG), distribuição de tamanho de partícula, difração de raio X (DRX) e microscopia eletrônica de varredura (MEV). Os filmes de (LSCF6428), (LSCF6428/CGO) e (LSCF6428/CGO/PrOx), foram obtidos por serigrafia de pós calcinados a 1000 °C. Os filmes foram depositados sobre substratos de céria dopada com gadolínia Ce0,9Gd0,1O2-δ (CGO), sinterizados a 1150 °C e caracterizados por espectroscopia de impedância (em oxigênio puro) entre 600 e 800 °C. Os resultados obtidos indicaram que o método utilizado foi eficiente na formação de pós porosos e com a estrutura cristalina perovskita. O tamanho de cristalito para o compósito de LSCF6428/CGO foi de 336 (nm) para o LSCF6428 e 98 (nm) para o CGO, sendo, também o esperado para um pó calcinado a 1000 °C. O valor da resistência específica de área (REA) para o eletrodo de LSCF6428 puro a 750 °C foi de 0,25 ohms.cm2 bastante plausível, principalmente por não ter sido feito uso de platina, para o LSCF/CGO/PrOx foi obtido uma REA de 0,02 ohms.cm2 a 750 °C.
2

New solid state oxygen and hydrogen conducting materials. Towards their applications as high temperature electrochemical devices and gas separation membranes

Balaguer Ramírez, María 02 September 2013 (has links)
Los materiales conductores mixtos de electrones e iones (oxígeno o protones) son capaces de separar oxígeno o hidrógeno de los gases de combustión o de corrientes de reformado a alta temperatura. La selectividad de este proceso es del 100%. Estos materiales, óxidos sólidos densos, pueden usarse en la producción de electricidad a partir de combustibles fósiles, así como formar parte de los procesos que forman parte del sistema de captura y almacenamiento de CO2. Las membranas de transporte de oxígeno (MTO) se pueden utilizar en las plantas energéticas con procesos de oxicombustión, así como en reactores catalíticos de membrana (RCM), mientras que las membranas de transporte de hidrógeno (MTH) se aplican en procesos de precombustión. Además, estos materiales encuentran aplicación en componentes de sistemas energéticos, como electrodos o electrolitos de pilas de combustible de óxido sólido, de ambas clases iónicas y protónicas (SOFC y PC-SOFC). Los procesos mencionados implican condiciones de operación muy severas, como altas temperaturas y grandes gradientes de presión parcial de oxígeno (pO2), probablemente combinadas con la presencia de CO2 and SO2. Los materiales más que mayor rendimiento de separación presentan y más ampliamente investigados en este campo son inestables en estas condiciones. Por tanto, existe la necesidad de encontrar nuevos materiales inorgánicos estables que proporcionen alta conductividad electrónica e iónica. La presente tesis propone una búsqueda sistemática de nuevos conductores iónicos-electrónicos mixtos (MIEC, del inglés) con diferente estructura cristalina y/o diferente composición, variando la naturaleza de los elementos y la estequiometría del cristal. La investigación ha dado lugar a materiales capaces de transportar iones oxígeno, protones o cargas electrónicas y que son estables en las condiciones de operación. La caracterización de una amplia serie de cerias (CeO2) dopadas con lantánidos proporciona una comprensión general de las propiedades estructurales y de transporte, así como la relación entre ellas. Además, se estudia el efecto de la adición de cobalto a dicho sistema. Se ha completado el análisis con la optimización de las propiedades de trasporte a partir de la microestructura. Todo esto permite hacer una clasificación inicial de los materiales basada en el comportamiento de transporte principal y permite adecuar la estructura y las condiciones de operación para obtener las propiedades deseadas para cada aplicación. Algunos de los materiales extraídos de este estudio alcanzaron las expectativas. Las familias de materiales basadas en Ce1-x Tbx O2-¿ y Ce1-x Tbx O2-¿ +2 mol% Co proporcionan flujos de oxígeno bajos pero competitivos, ya que son estables en atmósferas con CO2. Además, la inclusión de estos materiales en membranas de dos fases aumenta el flujo de oxígeno. La combinación con una espinela libre de cobalto y de metales alcalinotérreos como es el Fe2 NiO4, ha dado lugar a un material prometedor en cuanto a flujo de oxígeno y estabilidad en CO2 y en SO2, que podría ser integrado en el proceso de oxicombustión. Por otra parte, se ha añadido metales como codopantes en el sistema Ce0.9-x Mx Gd0.1O1.95. Estos materiales, en combinación con la perovskita La1- x Srx MnO3 usada comúnmente como cátodo de SOFC, han sido capaces de disminuir la resistencia de polarización del cátodo. La mejora es consecuencia de la introducción de conductividad iónica por parte de la ceria. Las perovskitas dopadas basadas en CaTiO3 forman el segundo grupo de materiales investigados. La dificultad de obtener perovskitas estables y que presenten conducción mixta iónica y electrónica se ha hecho evidente. De entre los dopantes utilizados, el hierro y la combinación hierro-magnesio han sido los mejores candidatos. Ambos materiales presentan conductividad principalmente iónica a alta temperatura, mientras que a baja predomina la conductividad electrónica tipo p. CaTi0.73Fe0.18Mg0.09O3-¿ se ha mostrado como un material competente en la fabricación de membranas de oxígeno, que proporciona flujos adecuados a la par que estabilidad en CO2. Finalmente, la perovskita La0.87Sr0.13CrO3 (LSC) ha sido dopada con el objetivo de aumentar la conductividad mixta protónica electrónica. Este estudio ha llevado al desarrollo de una nueva generación de ánodos para PC-SOFC basadas en electrolitos de LWO. Las perovskitas dopadas con Ce en el sitio del La (LSCCe) y con Ni en el sitio del Cr (LSCN) son estables en condiciones de operación reductoras, así como en contacto con el electrolito. El uso de ambos materiales como ánodo disminuye la resistencia de polarización con respecto al LSC. El LSCCe está limitado por los procesos que ocurren a baja frecuencia (BF), relacionados con los procesos superficiales, y que son atenuados en el caso del LSCN debido a la formación de nanopartículas de Ni metálico en la superficie. La infiltración posterior con nanopartículas de Ni permite disminuir la resistencia a BF lo que sugiere que la reacción superficial de oxidación del H2 está siendo catalizada. La infiltración más concentrada en Ni (5Ni) elimina completamente la resistencia a BF en ambos ánodos, de forma que los procesos que ocurren a altas frecuencias son ahora limitantes. El ánodo constituido por LSCNi20+5Ni dio una resistencia de polarización de 0.26 ¿·cm 2 at 750 ºC en H2 húmedo. / Mixed ionic (oxygen ions or protons) and electronic conducting materials (MIEC) separate oxygen or hydrogen from flue gas or reforming streams at high temperature in a process 100% selective to the ion. These solid oxide materials may be used in the production of electricity from fossil fuels (coal or natural gas), taking part of the CO2 separation and storage system. Dense oxygen transport membranes (OTM) can be used in oxyfuel combustion plants or in catalytic membrane reactors (CMR), while hydrogen transport membranes (HTM) would be applied in precombustion plants. Furthermore, these materials may also be used in components for energy systems, as advanced electrodes or electrolytes for solid oxide fuel cells (SOFC) and proton conducting solid oxide fuel cells (PCSOFC) working at high and moderate temperature. The harsh working conditions stablished by the targeted processes include high temperatures and low O2 partial pressures (pO2), probably combined with CO2 and SO2 containing gases. The instability disadvantages presented by the most widely studied materials for these purposes make them impractical for application to gas separation. Thus, the need to discover new stable inorganic materials providing high electronic and ionic conductivity is still present. This thesis presents a systematic search for new mixed ionic-electronic conductors. It includes different crystalline structures and/or composition of the crystal lattice, varying the nature of the elements and the stoichiometry of the crystal. The research has yielded new materials capable to transport oxygen ions or protons and electronic carriers that are stable in the working condition to which they are submitted. / Balaguer Ramírez, M. (2013). New solid state oxygen and hydrogen conducting materials. Towards their applications as high temperature electrochemical devices and gas separation membranes [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31654 / TESIS / Premios Extraordinarios de tesis doctorales

Page generated in 0.0488 seconds