Spelling suggestions: "subject:"exygen transport membranes"" "subject:"0xygen transport membranes""
1 |
Development of high temperature MIEC catalytic reactors for energy conversion and storage aplicationsLaqdiem Marín, Marwan 10 June 2024 (has links)
[ES] Esta tesis está centrada en la combinación de diferentes tecnologías para mejorar las tecnologías emergentes de captura y almacenamiento de carbono (CSS) y la revalorización del CO2 capturado. La principal tecnología estudiada en esta tesis fueron las membranas de transporte de oxigeno (OTMs), las cuales pueden producir oxigeno puro de forma más flexible que las actuales tecnologías de producción de oxigeno, como la destilación criogénica de aire. La producción de oxigeno puro es crucial para desarrollar reactores de oxicombustión que podrían ser mas eficientes para la captura de CO2 que los reactores actuales de combustión con aire. Los estudios sobre OTMs se dividieron en dos temas principales: membranas de bifásicas estables en CO2 y membranas basadas en BSCF (Ba1-xSrxCo1-yFeyO3-¿). Por otro lado, para la revalorización del CO2 capturado, se estudio' la tecnología de looping químico basada en catalizador de oxido de cerio, que aprovecha las propiedades redox del catalizador a diferentes pO2 y altas temperaturas (entre 700- 1400 ¿C).
En general, las principales etapas limitantes en OTMs son la transferencia de oxigeno a trave's de la membrana y las reacciones superficiales. Por eso, una mejora en las propiedades de la capa catalítica podri'a mejorar la permeacio'n total de oxigeno. El primer estudio sobre membranas bifásicas se centro' el estudio de capas catali'ticas con distintas proporciones de ambas fases. Para este estudio, se selecciono' el NFO-CTO (NiFe2O4/Ce0.8Tb0.2O2-¿) como composite. Este material ya ha sido estudiado en nuestro laboratorio, y mostró una gran estabilidad en atmósferas de CO2, pero con baja permeación de O2 en comparación con otros composites. Este estudio mostró resultados interesantes, y se combino' con medidas de espectroscopia de impedancia electroqui'mica (EIS), utilizadas habitualmente para estudiar electrodos para pilas de combustible de o'xido so'lido (SOFC) y pilas de electro'lisis de o'xido so'lido (SOEC). El segundo estudio sobre composites para OTMs se centro' en el aumento de la permeacio'n de oxi'geno con composites basados en espinela-fluorita. En este caso, el transporte de oxigeno esta' controlado, adema's de por la temperatura y el gradiente de pO2, por la conductividad ambipolar, en la que intervienen las conductividades eléctrica e io'nica. Asi', se cambio' la fase de NFO por la fase de CMO (Co2MnO4) que tiene mayor conductividad total que el NFO. El composite resultante (CMO-CTO) ha mostrado un mayor rendimiento que el material predecesor NFO-CTO.
Como se ha mencionado anteriormente, el otro estudio sobre OTM se realizo' con membranas basadas en BSCF. En este estudio, la membrana capilar BSCF fue electrificada para aumentar la temperatura de la membrana por efecto Joule y como consecuencia un aumento en la permeación de oxigeno. Además, se estudió este efecto bajo deshidrogenacio'n oxidativa de etano, obteniéndose una mejora importante para las membranas BSCF electrificadas en comparación con las membranas BSCF no electrificadas. Estos estudios abren las puertas al uso de ellas con reactores a más baja temperatura.
El último estudio se centra en la revalorización del CO2 mediante el reformado de metano por ciclos químicos. Los ciclos químicos están basados en las propiedades redox del catalizador y las dos etapas de reducción y oxidación del catalizador. La reducción del catalizador es realizada mediante temperatura y en condiciones inertes o con corrientes reductoras como por ejemplo en metano. Los estudios se centran en la reducción a través de metano que trabaja a temperaturas más bajas que para corrientes inertes y, ademas, proporciona corrientes de syngas (mezcla de CO y H2) en la etapa de reducción del catalizador, que mejora la eficiencia global del proceso. La revalorización del CO2 se realizaba en la etapa de oxidación del catalizador. La oxidación de estos catalizadores podría formarse con flujos de H2O y/o / [CA] Aquesta tesi està centrada en la combinació de diferents tecnologies per millorar
les tecnologies emergents de captura i emmagatzematge de carboni (CSS) i la
revalorització del CO2 capturat. La principal tecnologia estudiada en aquesta tesi
van ser les membranes de transport d'oxigen (OTMs), les quals poden produir
oxigen pur de manera més flexible que les actuals tecnologies de producció
d'oxigen, com la destil·lació criogènica de l'aire. La producció d'oxigen pur és
crucial per al desenvolupament de reactors d'oxicombustió que podrien ser més
eficients per a la captura de CO2 que els reactors actuals de combustió amb aire.
Els estudis sobre OTMs es van dividir en dos temes principals: membranes
composites de dos fases estables en CO2 i membranes basades en BSCF (Ba1-
xSrxCo1-yFeyO3-). D'altra banda, per a la revalorització del CO2 capturat, es va
estudiar la tecnologia de looping químic basada en catalitzador d'òxid de ceri, que
aprofita les propietats redox del catalitzador a diferents pO2 i altes temperatures
(entre 700-1400 ºC).
En general, les principals etapes limitants en OTMs són la transferència d'oxigen a
través de la membrana i les reaccions superficials. Per això, una millora en les
propietats de la capa catalítica podria millorar la permeació total d'oxigen. El primer
estudi sobre membranes bifàsiques es va centrar en l'estudi de capes catalítiques
amb diferents proporcions de ambdues fases. Per a aquest estudi, es va seleccionar
el NFO-CTO (NiFe2O4/Ce0.8Tb0.2O2-δ) com a composite. Aquest material ja ha sigut
estudiat en el nostre laboratori, i va mostrar una gran estabilitat en atmosferes de
CO2, però amb baixa permeació d'O2 en comparació amb altres composites. Aquest
estudi va mostrar resultats interessants, i es va combinar amb mesures
d'espectroscòpia d'impedància electroquímica (EIS), utilitzades habitualment per
estudiar elèctrodes per a piles de combustible d'òxid sòlid (SOFC) i piles
d'electròlisi d'òxid sòlid (SOEC). El segon estudi sobre composites per a OTMs es
va centrar en l'augment de la permeació d'oxigen amb composites basats en
espinela-fluorita. En aquest cas, el transport d'oxigen està controlat, a més de per la
temperatura i el gradient de pO2, per la conductivitat ambipolar, en la qual
intervenen les conductivitats elèctrica i iònica. Així, es va canviar la fase de NFO
per la fase de CMO (Co2MnO4) que té una major conductivitat total que el NFO.
El composite resultant (CMO-CTO) ha mostrat un major rendiment que el material
predecessor NFO-CTO.
L'últim estudi es centra en la revalorització del CO2 mitjançant el reformat de metà
per cicles químics. Els cicles químics estan basats en les propietats redox del
catalitzador i les dues etapes de reducció i oxidació del catalitzador. La reducció
del catalitzador és realitzada mitjançant temperatura i en condicions inertes o amb
corrents reductores com per exemple en metà. Els estudis se centren en la reducció
a través de metà que treballa a temperatures més baixes que per a corrents inertes i,
a més, proporciona corrents de syngas (barreja de CO i H2) en l'etapa de reducció
del catalitzador, que millora l'eficiència global del procés. La revalorització del CO2
es realitzava en l'etapa d'oxidació del catalitzador. L'oxidació d'aquests
catalitzadors podria formar-se amb fluxos de H2O i/o CO2 a altes temperatures 700-
1000 ºC. El nostre estudi es centra en òxids de ceri dopats al 10% amb elements 19Chapter 0: Preamble
trivalent, generalment lantànids. En aquest estudi es va correlacionar la velocitat de
splitting del CO2 en l'etapa d'oxidació amb el volum de cel·la de l'estructura
cristal·lina i la conductivitat total d'aquests materials. / [EN] This thesis is focused on the combination of different technologies to improve emerging technologies for carbon capture and storage (CSS) and the revalorization of the CO2 captured. The leading technology studied in this thesis was oxygen transport membranes (OTMs) that could produce pure oxygen more flexibly than the current oxygen production technologies like cryogenic air distillation. The production of pure oxygen is crucial for developing oxycombustion reactors that could be more efficient for carbon capture than traditional combustion reactors. The OTMs studies were divided into two main topics: dual-phase membranes with stable operation in CO2 and BSCF-based membranes (Ba1-xSrxCo1-yFeyO3-¿). For the revalorization of the captured CO2, the chemical looping technology based on a cerium oxide catalyst was studied, which takes advantage of the redox properties of the catalyst at different pO2 and high temperatures (between 700-1400 ¿C).
In general, the principal limiting steps for OTMs were the bulk oxygen transfer and the surface exchange reactions. In this matter, the improvement in the behaviour of the catalytic layer could achieve better oxygen permeation. The first study for dual- phase membranes was focused on the role of the different dual-phase ratios in the behaviour as a catalytic layer in OTMs. For this study, NFO-CTO (NiFe2O4/Ce0.8Tb0.2O2-¿) was selected as dual-phase material. This material was previously studied and showed high stability under CO2 environments but with poor oxygen flux compared with other dual-phase materials. The study considered for the present Thesis showed interesting results, and it was combined with electrochemical impedance spectroscopy (EIS) measurements, commonly used to study electrodes for solid oxide fuel cells (SOFC) and solid oxide electrolysis cells (SOEC). The second study in dual-phase materials for OTMs focused on the increase in oxygen permeation for spinel-fluorite-based materials. In this matter, the bulk oxygen transports are controlled, apart from the temperature and the pO2 gradient, by the ambipolar conductivity, where the electrical and the ionic conductivities are involved. So, the NFO phase was changed for the CMO phase (Co2MnO4), which has higher total conductivity than the NFO. The resultant dual- phase material (CMO-CTO) performed better than the predecessor NFO-CTO material.
As mentioned previously, the other study on OTMs focused on BSCF-based membranes. In this study, the BSCF capillary membrane was electrified in order to increase the membrane temperature via the Joule effect and, as a consequence, an increase in the oxygen permeation. In addition, this effect under oxidative dehydrogenation of ethane was studied, obtaining an essential improvement for electrified BSCF membranes compared with non-electrified BSCF membranes. These studies have opened new gates to operate these membranes at lower reactor temperatures.
Finally, the last study was focused on CO2 upcycling via chemical looping methane reforming. Chemical looping is based on the redox properties of the catalyst in two principal steps, reduction and oxidation of the catalyst. The catalyst reduction is performed with temperature in inert conditions or with reducing streams like methane. We were focused on the reduction via methane that works at lower temperatures than inert streams and could provide syngas streams (a mixture of CO and H2) that improve global efficiency. The revalorization of the CO2 was performed in the other step, the oxidation part of the cycle. The oxidation of those catalysts could be formed with H2O and/or CO2 streams at high temperatures of 700-1000 ¿C. Our study was focused on 10% doped cerium oxide with trivalent elements. In this study, the CO2 splitting on the oxidation step was correlated with the crystal structure parameters and the total conductivity of these materials. / Laqdiem Marín, M. (2024). Development of high temperature MIEC catalytic reactors for energy conversion and storage aplications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/204871
|
2 |
Materials and catalysts incorporation for the fuel oxidation layer of oxygen transport membranesPapargyriou, Despoina January 2017 (has links)
Oxygen Transport Membranes (OTMs) can drastically reduce the energy and cost demands of processes that require pure oxygen, as they offer the possibility to combine a separation unit with a chemical reactor. One of the most commercially viable applications of OTMs is the partial oxidation of hydrocarbons for syngas production. A typical OTM configuration is a sequential arrangement of layers, i.e. an inactive support, a fuel oxidation layer, a dense layer and an oxygen reduction layer. However, one of the limitations of the OTM system is the low catalytic activity and stability of the materials currently used for the fuel oxidation layer. Moreover, the traditional deposition techniques that are used for the catalysts preparation are difficult to perform, as the fuel oxidation layer is buried deeply in the structure of the OTM. To simplify the OTM fabrication and improve the catalysts activity and stability, this thesis explores the exsolution of Ni nanoparticles from two different host lattice compositions, as potential materials for the fuel oxidation layer of OTMs. The (La₀.₇₅Sr₀.₂₅)(Cr₀.₅Mn₀.₄₅Ni₀.₅)O₃ (LSCMNi5) perovskite was selected, as the first candidate material for the OTMs. During reduction, the exsolution of Ni nanoparticles from the perovskite lattice took place and enhanced significantly the catalytic activity of the material regarding methane conversion. However, these nanoparticles were oxidised during the first hours of the testing and slowly reincorporated into the perovskite structure, leading to drop in the performance. Thereafter, the (La₀.₇₅Sr₀.₂₅)(Cr₀.₅Mn₀.₄₅Ni₀.₅)O₃ (LSCMNi5) perovskite was selected as an alternative composition. When the oxide lattice was sufficiently reduced, the exsolution of Fe-Ni alloy nanoparticles occurred. The catalytic testing suggested that the Fe-Ni alloy nanoparticles on LSCFNi5 presented lower activity for methane conversion comparing to the Ni nanoparticles on LSCMNi5, but higher stability in oxidising conditions. By increasing the Ni doping on the B-site of LSCF to 15 mol%, the catalytic activity of the material regarding methane conversion was increased and exceeded that of LSCMNi5. A CH₄ conversion of 70% was achieved, which was 20 times higher than that of the initial LSCF perovskite. Therefore, by tailoring the perovskite composition and the exsolution of the Fe-Ni alloy nanoparticles, it was possible to synthesize a material for the fuel oxidation layer of OTMs, which combined the high catalytic activity of Ni and the good redox stability of Fe.
|
3 |
CHEMICAL EXPANSIVITY IN CERAMIC OXYGEN TRANSPORT MATERIALSCai, Andrew 27 August 2020 (has links)
No description available.
|
4 |
New solid state oxygen and hydrogen conducting materials. Towards their applications as high temperature electrochemical devices and gas separation membranesBalaguer Ramírez, María 02 September 2013 (has links)
Los materiales conductores mixtos de electrones e iones (oxígeno o
protones) son capaces de separar oxígeno o hidrógeno de los gases de combustión
o de corrientes de reformado a alta temperatura. La selectividad de este proceso
es del 100%. Estos materiales, óxidos sólidos densos, pueden usarse en la
producción de electricidad a partir de combustibles fósiles, así como formar parte
de los procesos que forman parte del sistema de captura y almacenamiento de
CO2. Las membranas de transporte de oxígeno (MTO) se pueden utilizar en las
plantas energéticas con procesos de oxicombustión, así como en reactores
catalíticos de membrana (RCM), mientras que las membranas de transporte de
hidrógeno (MTH) se aplican en procesos de precombustión. Además, estos
materiales encuentran aplicación en componentes de sistemas energéticos, como
electrodos o electrolitos de pilas de combustible de óxido sólido, de ambas clases
iónicas y protónicas (SOFC y PC-SOFC).
Los procesos mencionados implican condiciones de operación muy
severas, como altas temperaturas y grandes gradientes de presión parcial de
oxígeno (pO2), probablemente combinadas con la presencia de CO2 and SO2. Los
materiales más que mayor rendimiento de separación presentan y más
ampliamente investigados en este campo son inestables en estas condiciones. Por
tanto, existe la necesidad de encontrar nuevos materiales inorgánicos estables que
proporcionen alta conductividad electrónica e iónica.
La presente tesis propone una búsqueda sistemática de nuevos
conductores iónicos-electrónicos mixtos (MIEC, del inglés) con diferente
estructura cristalina y/o diferente composición, variando la naturaleza de los
elementos y la estequiometría del cristal. La investigación ha dado lugar a materiales capaces de transportar iones oxígeno, protones o cargas electrónicas y
que son estables en las condiciones de operación.
La caracterización de una amplia serie de cerias (CeO2) dopadas con
lantánidos proporciona una comprensión general de las propiedades estructurales
y de transporte, así como la relación entre ellas. Además, se estudia el efecto de la
adición de cobalto a dicho sistema. Se ha completado el análisis con la
optimización de las propiedades de trasporte a partir de la microestructura. Todo
esto permite hacer una clasificación inicial de los materiales basada en el
comportamiento de transporte principal y permite adecuar la estructura y las
condiciones de operación para obtener las propiedades deseadas para cada
aplicación.
Algunos de los materiales extraídos de este estudio alcanzaron las
expectativas. Las familias de materiales basadas en Ce1-x
Tbx
O2-¿
y Ce1-x
Tbx
O2-¿
+2 mol% Co proporcionan flujos de oxígeno bajos pero competitivos, ya que son
estables en atmósferas con CO2. Además, la inclusión de estos materiales en
membranas de dos fases aumenta el flujo de oxígeno. La combinación con una
espinela libre de cobalto y de metales alcalinotérreos como es el Fe2
NiO4, ha
dado lugar a un material prometedor en cuanto a flujo de oxígeno y estabilidad en
CO2 y en SO2, que podría ser integrado en el proceso de oxicombustión.
Por otra parte, se ha añadido metales como codopantes en el sistema
Ce0.9-x
Mx
Gd0.1O1.95. Estos materiales, en combinación con la perovskita La1-
x
Srx
MnO3 usada comúnmente como cátodo de SOFC, han sido capaces de
disminuir la resistencia de polarización del cátodo. La mejora es consecuencia de
la introducción de conductividad iónica por parte de la ceria.
Las perovskitas dopadas basadas en CaTiO3 forman el segundo grupo de
materiales investigados. La dificultad de obtener perovskitas estables y que presenten conducción mixta iónica y electrónica se ha hecho evidente. De entre
los dopantes utilizados, el hierro y la combinación hierro-magnesio han sido los
mejores candidatos. Ambos materiales presentan conductividad principalmente
iónica a alta temperatura, mientras que a baja predomina la conductividad
electrónica tipo p. CaTi0.73Fe0.18Mg0.09O3-¿ se ha mostrado como un material
competente en la fabricación de membranas de oxígeno, que proporciona flujos
adecuados a la par que estabilidad en CO2.
Finalmente, la perovskita La0.87Sr0.13CrO3 (LSC) ha sido dopada con el
objetivo de aumentar la conductividad mixta protónica electrónica. Este estudio
ha llevado al desarrollo de una nueva generación de ánodos para PC-SOFC
basadas en electrolitos de LWO. Las perovskitas dopadas con Ce en el sitio del
La (LSCCe) y con Ni en el sitio del Cr (LSCN) son estables en condiciones de
operación reductoras, así como en contacto con el electrolito. El uso de ambos
materiales como ánodo disminuye la resistencia de polarización con respecto al
LSC. El LSCCe está limitado por los procesos que ocurren a baja frecuencia
(BF), relacionados con los procesos superficiales, y que son atenuados en el caso
del LSCN debido a la formación de nanopartículas de Ni metálico en la
superficie. La infiltración posterior con nanopartículas de Ni permite disminuir la
resistencia a BF lo que sugiere que la reacción superficial de oxidación del H2
está siendo catalizada. La infiltración más concentrada en Ni (5Ni) elimina
completamente la resistencia a BF en ambos ánodos, de forma que los procesos
que ocurren a altas frecuencias son ahora limitantes. El ánodo constituido por
LSCNi20+5Ni dio una resistencia de polarización de 0.26 ¿·cm
2
at 750 ºC en H2
húmedo. / Mixed ionic (oxygen ions or protons) and electronic conducting materials
(MIEC) separate oxygen or hydrogen from flue gas or reforming streams at high
temperature in a process 100% selective to the ion. These solid oxide materials
may be used in the production of electricity from fossil fuels (coal or natural gas),
taking part of the CO2 separation and storage system. Dense oxygen transport
membranes (OTM) can be used in oxyfuel combustion plants or in catalytic
membrane reactors (CMR), while hydrogen transport membranes (HTM) would
be applied in precombustion plants. Furthermore, these materials may also be
used in components for energy systems, as advanced electrodes or electrolytes for
solid oxide fuel cells (SOFC) and proton conducting solid oxide fuel cells (PCSOFC)
working at high and moderate temperature.
The harsh working conditions stablished by the targeted processes
include high temperatures and low O2 partial pressures (pO2), probably
combined with CO2 and SO2 containing gases. The instability disadvantages
presented by the most widely studied materials for these purposes make them
impractical for application to gas separation. Thus, the need to discover new
stable inorganic materials providing high electronic and ionic conductivity is
still present.
This thesis presents a systematic search for new mixed ionic-electronic
conductors. It includes different crystalline structures and/or composition of the
crystal lattice, varying the nature of the elements and the stoichiometry of the
crystal. The research has yielded new materials capable to transport oxygen ions
or protons and electronic carriers that are stable in the working condition to
which they are submitted. / Balaguer Ramírez, M. (2013). New solid state oxygen and hydrogen conducting materials. Towards their applications as high
temperature electrochemical devices and gas separation membranes [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31654 / Premios Extraordinarios de tesis doctorales
|
Page generated in 0.062 seconds