• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Novel Method of Characterizing Polymer Membranes Using Upstream Gas Permeation Tests

Al-Ismaily, Mukhtar 05 December 2011 (has links)
Characterization of semi-permeable films promotes the systematic selection of membranes and process design. When acquiring the diffusive and sorption properties of gas transport in non-porous membranes, the time lag method is considered the conventional method of characterization. The time lag method involves monitoring the transient accumulation of species due to permeation on a fixed volume present in a downstream reservoir. In the thesis at hand, an alternative approach to the time lag technique is proposed, termed as the short cut method. The short cut method appoints the use of a two reservoir system, where the species decay in the upstream face of the membrane is monitored, in combination with the accumulation on the downstream end. The early and short time determination of membrane properties is done by monitoring the inflow and outflow flux profiles, including their respective analytical formulas. The newly proposed method was revealed to have estimated the properties at 1/10 the required time it takes for the classical time lag method, which also includes a better abidance to the required boundary conditions. A novel design of the upstream reservoir, consisting of a reference and working volume, is revealed, which includes instructional use, and the mechanics involved with its operation. Transient pressure decay profiles are successfully obtained when the reference and working volumes consisted of only tubing. However when tanks were included in the volumes, large errors in the decay were observed, in particular due to a non-instantaneous equilibration of the pressure during the start up. This hypothesis was further re-enforced by examining different upstream tank-based configurations. iii In the end, a validated numerical model was constructed for the purpose of simulating the two reservoir gas permeation system. A modified form of the finite differences scheme is utilized, in order to account for a concentration-dependent diffusivity of penetrants within the membrane. Permeation behavior in a composite membrane system was disclosed, which provided a new perspective in analyzing the errors associated with the practical aspect of the system.
2

A Novel Method of Characterizing Polymer Membranes Using Upstream Gas Permeation Tests

Al-Ismaily, Mukhtar 05 December 2011 (has links)
Characterization of semi-permeable films promotes the systematic selection of membranes and process design. When acquiring the diffusive and sorption properties of gas transport in non-porous membranes, the time lag method is considered the conventional method of characterization. The time lag method involves monitoring the transient accumulation of species due to permeation on a fixed volume present in a downstream reservoir. In the thesis at hand, an alternative approach to the time lag technique is proposed, termed as the short cut method. The short cut method appoints the use of a two reservoir system, where the species decay in the upstream face of the membrane is monitored, in combination with the accumulation on the downstream end. The early and short time determination of membrane properties is done by monitoring the inflow and outflow flux profiles, including their respective analytical formulas. The newly proposed method was revealed to have estimated the properties at 1/10 the required time it takes for the classical time lag method, which also includes a better abidance to the required boundary conditions. A novel design of the upstream reservoir, consisting of a reference and working volume, is revealed, which includes instructional use, and the mechanics involved with its operation. Transient pressure decay profiles are successfully obtained when the reference and working volumes consisted of only tubing. However when tanks were included in the volumes, large errors in the decay were observed, in particular due to a non-instantaneous equilibration of the pressure during the start up. This hypothesis was further re-enforced by examining different upstream tank-based configurations. iii In the end, a validated numerical model was constructed for the purpose of simulating the two reservoir gas permeation system. A modified form of the finite differences scheme is utilized, in order to account for a concentration-dependent diffusivity of penetrants within the membrane. Permeation behavior in a composite membrane system was disclosed, which provided a new perspective in analyzing the errors associated with the practical aspect of the system.
3

A Novel Method of Characterizing Polymer Membranes Using Upstream Gas Permeation Tests

Al-Ismaily, Mukhtar 05 December 2011 (has links)
Characterization of semi-permeable films promotes the systematic selection of membranes and process design. When acquiring the diffusive and sorption properties of gas transport in non-porous membranes, the time lag method is considered the conventional method of characterization. The time lag method involves monitoring the transient accumulation of species due to permeation on a fixed volume present in a downstream reservoir. In the thesis at hand, an alternative approach to the time lag technique is proposed, termed as the short cut method. The short cut method appoints the use of a two reservoir system, where the species decay in the upstream face of the membrane is monitored, in combination with the accumulation on the downstream end. The early and short time determination of membrane properties is done by monitoring the inflow and outflow flux profiles, including their respective analytical formulas. The newly proposed method was revealed to have estimated the properties at 1/10 the required time it takes for the classical time lag method, which also includes a better abidance to the required boundary conditions. A novel design of the upstream reservoir, consisting of a reference and working volume, is revealed, which includes instructional use, and the mechanics involved with its operation. Transient pressure decay profiles are successfully obtained when the reference and working volumes consisted of only tubing. However when tanks were included in the volumes, large errors in the decay were observed, in particular due to a non-instantaneous equilibration of the pressure during the start up. This hypothesis was further re-enforced by examining different upstream tank-based configurations. iii In the end, a validated numerical model was constructed for the purpose of simulating the two reservoir gas permeation system. A modified form of the finite differences scheme is utilized, in order to account for a concentration-dependent diffusivity of penetrants within the membrane. Permeation behavior in a composite membrane system was disclosed, which provided a new perspective in analyzing the errors associated with the practical aspect of the system.
4

A Novel Method of Characterizing Polymer Membranes Using Upstream Gas Permeation Tests

Al-Ismaily, Mukhtar January 2011 (has links)
Characterization of semi-permeable films promotes the systematic selection of membranes and process design. When acquiring the diffusive and sorption properties of gas transport in non-porous membranes, the time lag method is considered the conventional method of characterization. The time lag method involves monitoring the transient accumulation of species due to permeation on a fixed volume present in a downstream reservoir. In the thesis at hand, an alternative approach to the time lag technique is proposed, termed as the short cut method. The short cut method appoints the use of a two reservoir system, where the species decay in the upstream face of the membrane is monitored, in combination with the accumulation on the downstream end. The early and short time determination of membrane properties is done by monitoring the inflow and outflow flux profiles, including their respective analytical formulas. The newly proposed method was revealed to have estimated the properties at 1/10 the required time it takes for the classical time lag method, which also includes a better abidance to the required boundary conditions. A novel design of the upstream reservoir, consisting of a reference and working volume, is revealed, which includes instructional use, and the mechanics involved with its operation. Transient pressure decay profiles are successfully obtained when the reference and working volumes consisted of only tubing. However when tanks were included in the volumes, large errors in the decay were observed, in particular due to a non-instantaneous equilibration of the pressure during the start up. This hypothesis was further re-enforced by examining different upstream tank-based configurations. iii In the end, a validated numerical model was constructed for the purpose of simulating the two reservoir gas permeation system. A modified form of the finite differences scheme is utilized, in order to account for a concentration-dependent diffusivity of penetrants within the membrane. Permeation behavior in a composite membrane system was disclosed, which provided a new perspective in analyzing the errors associated with the practical aspect of the system.

Page generated in 0.0831 seconds