• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonlinear Mechanical and Actuation Characterization of Piezoceramic Fiber Composites

Williams, Robert Brett 23 April 2004 (has links)
The use of piezoelectric ceramic materials for structural actuation is a fairly well developed practice that has found use in a wide variety of applications. However, actuators with piezoceramic fibers and interdigitated electrodes have risen to the forefront of the intelligent structures community due to their increased actuation capability. However, their fiber-reinforced construction causes them to exhibit anisotropic piezomechanical properties, and the required larger driving voltages make the inherent piezoelectric nonlinearities more prevalent. In order to effectively utilize their increased performance, the more complicated behavior of these actuators must be sufficiently characterized. The current work is intended to provide a detailed nonlinear characterization of the mechanical and piezoelectric behavior of the Macro Fiber Composite actuator, which was developed at the NASA Langley Research Center. The mechanical behavior of this planar actuation device, which is both flexible and robust, is investigated by first developing a classical lamination model to predict its short-circuit linear-elastic properties, which are then verified experimentally. The sensitivity of this model to variations in constituent material properties is also studied. Phenomenological models are then used to represent the measured nonlinear short-circuit stress-strain response to various in-plane mechanical loads. Piezoelectric characterization begins with a nonlinear actuation model whose material parameters are determined experimentally for monotonically increasing electric fields. Next, the response of the actuator to a sinusoidal electric field input is measured under various constant mechanical loads and field amplitudes. From this procedure, the common linear piezoelectric strain coefficients are presented as a function of electric field amplitude and applied stress. In addition, a Preisach model is developed that uses the collected data sets to predict the hysteretic piezoelectric behavior of the MFC. Lastly, other related topics, such as manufacturing, cure kinetics modeling and linear thermoelasticity of the Macro Fiber Composite, are covered in the appendices. / Ph. D.
2

EXPERIMENTAL AND ANALYTICAL INVESTIGATION OF DYNAMIC COMPRESSIVE BEHAVIOR OF INTACT AND DAMAGED CERAMICS

Luo, Huiyang January 2005 (has links)
The mechanical responses of the comminuted ceramic under impact is important in understanding penetration resistance of the target, modeling the penetration process, developing ceramic models and designing better armor systems. To determine the dynamic compressive responses of ceramic rubbles, a novel loading/reloading feature in SHPB experiments was developed to produce two consecutive loading pulses in a single dynamic experiment with two strikers and two shapers. The first pulse pulverizes the intact specimen into rubble after characterizing the intact material. After unloading of the first pulse, a second pulse loads the comminuted specimen and gives the dynamic constitutive behavior of the rubble.With this new experimental technique, several series of experiments were conducted on an oxide ceramic -- alumina AD995 and a non-oxide ceramic--hot pressed silicon carbide, SiC-N, with different strain rates, various volume dilatations and damaged levels under 26 MPa, 56 MPa and 104 MPa confinement. The results show that the strength of the damaged ceramic is not very sensitive to strain rates within this research range and the pulse separation once the damage attains a critical level. When slightly damaged far below a critical level, the specimen remains nearly elastic; when transitionally damaged, the specimen strength gradually decrease from the slight damage level to the heavy damage level. Increasing confinement increases the strength of the ceramics. The crack patterns were dominantly axial splitting for the slight damage, axial splitting and fragmentation for the intermediate damage, and fragmentation and comminution for the heavy damage. For SiC-N, the volume dilatation history shows a delayed failure. SEM observations indicated that microstructural failure mechanism is intergranular fracture for alumina and transgranular fracture for SiC-N.Mohr-Coulomb criterion was successfully employed to describe the damaged ceramic and the parameters were determined. JH-1 model was employed to describe the failed SiC-N in the linearly segmentation description of the strength and the parameters were also determined. Through the analysis of JH-1 model for SiC-N, the critical damage level can be taken as D = 1.0. JH-2 model was used to describe analytically the damaged AD995 and the parameters were obtained. The critical damage value is 0.88 for alumina determined directly from JH-2 model. The description of JH-1 model is equivalent to Mohr-Coulomb criterion while it is unsuitable for JH-2 model due to the non-linear description. Based on the analysis of existing models and current experimental data, an empirical constitutive material model was developed for the damaged ceramic, which well described the completely damaged ceramic, but was unable to model the partially damaged ceramic.
3

3D Modeling of Incipient Spall Damage in Shocked FCC Multicrystals

January 2013 (has links)
abstract: Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and to formulate continuum models that account for the variability of the damage process due to microstructural heterogeneity. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation. Correlations have been found between the damage sites and the surrounding microstructure to determine the preferred sites of spall damage, since it tends to localize at and around the regions of intrinsic defects such as grain boundaries and triple points. However, considerable amount of work still has to be done in this regard to determine the physics driving the damage at these intrinsic weak sites in the microstructure. The main focus of this research work is to understand the physical mechanisms behind the damage localization at these preferred sites. A crystal plasticity constitutive model is implemented with different damage criteria to study the effects of stress concentration and strain localization at the grain boundaries. A cohesive zone modeling technique is used to include the intrinsic strength of the grain boundaries in the simulations. The constitutive model is verified using single elements tests, calibrated using single crystal impact experiments and validated using bicrystal and multicrystal impact experiments. The results indicate that strain localization is the predominant driving force for damage initiation and evolution. The microstructural effects on theses damage sites are studied to attribute the extent of damage to microstructural features such as grain orientation, misorientation, Taylor factor and the grain boundary planes. The finite element simulations show good correlation with the experimental results and can be used as the preliminary step in developing accurate probabilistic models for damage nucleation. / Dissertation/Thesis / Ph.D. Mechanical Engineering 2013
4

An Empirically Validated Multiscale Continuum Damage Model for Thermoplastic Polymers Subjected to Variable Strain Rates

Francis, David K 11 May 2013 (has links)
This dissertation proposes a modi ed internal state variable (ISV) inelastic damage model that was motivated by experimental structure{property relations of thermoplastics. In particular, a new damage model was developed for glassy, amorphous thermoplastics. ISV evolution equations are de ned through thermodynamics, kinematics, and kinetics for isotropic damage arising from two di erent inclusion types: pores and particles. The damage arising from the particles and crazes is accounted for by three processes: damage nucleation, growth, and coalescence. Damage nucleation is de ned as the number density of voids/crazes. The associated ISV rate equation is a function of stress state, molecular weight, fracture toughness, particle size, particle volume fraction, temperature, and strain rate. The damage growth is based upon a single void growing and its growth is de ned by an ISV rate equation that is a function of stress state, strain rate sensitivity, and strain rate. The coalescence ISV equation enables interaction between voids and crazes and is a function of the nearest neighbor distance between voids/crazes, size of voids/crazes, temperature, and strain rate. The damage arising from pre-existing voids employs the Cocks{Ashby void growth rule. The total void volume fraction is a summation of the damage arising from particles, pores, and crazes. Micromechanical modeling results for a single void compare well to experimental ndings garnered from the literature. This formulation is then implemented into a nite element analysis. For damage evolution, comparisons are made between a one-dimensional material point simulator and a three-dimensional nite element (FE) simulation. Finally, good agreement is found between impact experiments and FE impact simulations using the implemented model.
5

A Contribution to the Modeling of Metal Plasticity and Fracture: From Continuum to Discrete Descriptions

Keralavarma, Shyam Mohan 2011 December 1900 (has links)
The objective of this dissertation is to further the understanding of inelastic behavior in metallic materials. Despite the increasing use of polymeric composites in aircraft structures, high specific strength metals continue to be used in key components such as airframe, fuselage, wings, landing gear and hot engine parts. Design of metallic structures subjected to thermomechanical extremes in aerospace, automotive and nuclear applications requires consideration of the plasticity, creep and fracture behavior of these materials. Consideration of inelasticity and damage processes is also important in the design of metallic components used in functional applications such as thin films, flexible electronics and micro electro mechanical systems. Fracture mechanics has been largely successful in modeling damage and failure phenomena in a host of engineering materials. In the context of ductile metals, the Gurson void growth model remains one of the most successful and widely used models. However, some well documented limitations of the model in quantitative prediction of the fracture strains and failure modes at low triaxialities may be traceable to the limited representation of the damage microstructure in the model. In the first part of this dissertation, we develop an extended continuum model of void growth that takes into account details of the material microstructure such as the texture of the plastically deforming matrix and the evolution of the void shape. The need for such an extension is motivated by a detailed investigation of the effects of the two types of anisotropy on the materials' effective response using finite element analysis. The model is derived using the Hill-Mandel homogenization theory and an approximate limit analysis of a porous representative volume element. Comparisons with several numerical studies are presented towards a partial validation of the analytical model. Inelastic phenomena such as plasticity and creep result from the collective behavior of a large number of nano and micro scale defects such as dislocations, vacancies and grain boundaries. Continuum models relate macroscopically observable quantities such as stress and strain by coarse graining the discrete defect microstructure. While continuum models provide a good approximation for the effective behavior of bulk materials, several deviations have been observed in experiments at small scales such as an intrinsic size dependence of the material strength. Discrete dislocation dynamics (DD) is a mesoscale method for obtaining the mechanical response of a material by direct simulation of the motion and interactions of dislocations. The model incorporates an intrinsic length scale in the dislocation Burgers vector and potentially allows for size dependent mechanical behavior to emerge naturally from the dynamics of the dislocation ensemble. In the second part of this dissertation, a simplified two dimensional DD model is employed to study several phenomena of practical interest such as strain hardening under homogeneous deformation, growth of microvoids in a crystalline matrix and creep of single crystals at elevated temperatures. These studies have been enabled by several recent enhancements to the existing two-dimensional DD framework described in Chapter V. The main contributions from this research are: (i) development of a fully anisotropic continuum model of void growth for use in ductile fracture simulations and (ii) enhancing the capabilities of an existing two-dimensional DD framework for large scale simulations in complex domains and at elevated temperatures.
6

Constitutive Behavior of a Twaron® Fabric/Natural Rubber Composite: Experiments and Modeling

Natarajan, Valliyappan D. 2009 December 1900 (has links)
Ballistic fabrics made from high performance polymeric fibers such as Kevlar®, Twaron® and Spectra® fibers and composites utilizing these fabrics are among the leading materials for modern body armor systems. Polymeric fibers used to produce ballistic fabrics often behave viscoelastically and exhibit time- and rate-dependent stress-strain relations. This necessitates the study of the constitutive behavior of composites filled by ballistic fabrics. Rheological models based on discrete rheological components (including spring and dashpot) have been widely used to study the viscoelastic behavior of polymeric fabrics. Such rheological (or viscoelasticity) models are qualitatively useful in understanding the effects of various micro-mechanisms and molecular features on the macroscopic responses of ballistic fabrics. In the present work, the constitutive behavior of Twaron CT709® fabric/natural rubber (Twaron®/NR) composite is studied using three viscoelasticity models (i.e., a four-parameter Burgers model, a three-parameter generalized Maxwell (GMn=1) model, a five-parameter generalized Maxwell (GMn=2) model) and a newly developed para-rheological model. The new model utilizes a three-parameter element to represent the Twaron® fabric and the affine network based molecular theory of rubber elasticity to account for the deformation mechanisms of the NR constituent. The uniaxial stress-strain relation of the Twaron®/NR composite at two constant strain rates is experimentally determined. The values of the parameters involved in all the models are extracted from the experimental data obtained in this study. The stress-relaxation response (under a uniaxial constant strain) and the creep deformation (under a uniaxial constant stress) of the composite are also experimentally measured. The three viscoelasticity models considered here are capable of predicting the viscoelastic constitutive behavior of the composite with different levels of accuracy. The stress-strain relation at each strain rate predicted by the newly developed para-rheological model is seen to be in good agreement with the measured stress-strain curve over the entire strain range studied. It is shown that the new model also predicts the elastic moduli and ultimate stress of the Twaron®/NR composite well. All the four models are found to predict the initial relaxation response of the composite fairly well, while the long-term stress relaxation is more accurately represented by the para-rheological model. An implicit solution provided by the para-rheological model is shown to predict the creep response of the composite more accurately than all the other models at both the primary and secondary stages. The mathematical complexity that arises from including an additional Maxwell element to the GMn=1 model to obtain the GMn=2 model with enhanced predictability is traded with the use of simple characteristic time functions in the para-rheological model. These functions are found to greatly improve the predictability of the newly developed model for the stress relaxation modulus and creep compliance. This study also explores the utility of the para-rheological model as a tool to probe the micromechanisms and molecular features that are causally related to the macroscopically observed viscoelastic behavior of the composite. The relaxation and creep trends predicted by the para-rheological model indicate that the long time viscoelastic response of the composite lies between that of a crosslinked polymer and a semi-crystalline thermoplastic.
7

Étude expérimentale et modélisation multi-physique de l’évolution de la microstructure dans les procédés d’usinage de l'alliage de titane Ti-6Al-4V / Experimental study and multi-physics modeling of microstructure evolution in Ti-6Al-4V titanium alloy machining

Yameogo, Dominique Ibrahima 30 January 2019 (has links)
Le présent travail concerne l’étude de l’usinage de l’alliage de titane Ti-6Al-4V, matériau très apprécié par les industries aéronautique, biomédicale et de l’énergie. Les qualités des alliages de titane sont nombreuses : haute résistance aux températures élevées et à la corrosion, haute résistance mécanique, biocompatibilité, etc. Cependant, certaines propriétés physiques de ces matériaux, comme leur faible conductivité thermique, conduisent à des difficultés lors de leur mise en forme par usinage. Des études ont été et sont toujours conduites afin de comprendre le comportement de ces matériaux lors de leur mise en forme. Peu de travaux portent sur la prise en compte de la microstructure dans le comportement des alliages de titane lors du procédé d’usinage. Cette dimension constitue l’une des originalités de ce travail de thèse. Les phénomènes microstructuraux sont caractérisés à travers une étude expérimentale en coupe orthogonale de l’alliage Ti-6Al-4V. Les efforts, la température, la morphologie des copeaux et la microstructure sont analysés et interprétés. Une étude numérique du processus de coupe par simulation éléments finis est employée pour comprendre le rôle de l’endommagement et de la recristallisation. A partir des conclusions de ces différentes études, la construction d’un nouveau modèle de comportement est proposée. Ce modèle est appliqué à une modélisation élément fini pour différentes conditions de coupe afin d’étudier l’influence des paramètres d’usinage. Le modèle est validé par comparaison aux résultats expérimentaux. Il est ensuite exploité afin de proposer une analyse du processus de la coupe et notamment de la formation du copeau. / The present work concerns the study of the machining of titanium alloy Ti-6Al-4V. This material is much appreciated by the aerospace, biomedical and energy industries for its advantageous properties: high resistance to high temperatures and corrosion, high mechanical strength, biocompatibility, etc. However, certain physical properties of these materials, such as their low thermal conductivity, lead to difficulties during the machining process. Studies have been and are still conducted to understand the behavior of these materials during their shaping. Few studies consider the influence of microstructure on the behavior of titanium alloys during the machining process. This is one of the originalities of the present work. The microstructural phenomena are characterized through an experimental study of orthogonal cutting of the Ti-6Al-4V alloy. Machining forces, temperature, chip morphology and microstructure are analyzed and discussed. A numerical study of the finite element simulation process is used to understand the role of damage and recrystallization. From the conclusions of these different studies, the construction of a new model of behavior is proposed. This model is applied to finite element modeling for different cutting conditions to study the influence of machining parameters. The model is validated by comparison with the experimental results. It is then used to propose an analysis of the microstructural phenomena during the cutting process and the formation of the chip.
8

Uma introdução à homogeneização das propriedades microscópicas de um material para o meio microscópico através do método dos elementos finitos. / An introduction homogenization of the properties of a material to the macroscopic medium throught finite element method.

Freitas Júnior, Sergio Augusto de 26 June 2019 (has links)
Sabe-se que na Engenharia há uma larga utilização de uma gama de materiais (concreto, aço, compósitos, solos etc.), os quais, de forma prática são analisados macroscopicamente naquilo que diz respeito a diversos fatores que influem no seu comportamento, como por exemplo, resistência, módulo de elasticidade, rigidez, dentre outras características. No entanto, estes materiais, em sua maioria heterogêneos, possuem tais comportamentos intrinsicamente relacionados à sua estrutura microscópica, a qual nos mostra que um material é o resultado de uma grande combinação de elementos dentro de sua composição, os quais irão reger tais propriedades. Os materiais podem ser estudados em diversas escalas, a qual dependerá do nível de detalhamento a ser atingido, de tal modo que a mesma pode variar desde o meio particulado até seu meio atômico. Uma das principais vantagens dos modelos multi-escala é a visualização, por parte do analista, das interações entre os constituintes do compósito, o que permite um melhor entendimento do comportamento do material e dos fenômenos de deterioração que ocorrem nas escalas menores e que determinam o comportamento da estrutura na escala maior. O objetivo do presente trabalho é fornecer uma revisão da aplicação de tais modelos, bem como estudar tais elementos diferenciais do material, em sua individualidade (como um meio contínuo), para então, através de um volume representativo, determinar as propriedades do material heterogêneo através de um modelo, representando assim o comportamento do conjunto de tais elementos, de tal modo a se tornar possível a avaliação dos impactos de eventuais mudanças em cada elemento no comportamento do material. / It is known that in Engineering there is a wide use of a range of materials (concrete, steel, composites, soils, etc.), which are practically analyzed macroscopically with respect to several factors that influence their behavior, such as for example, strength, modulus of elasticity, rigidity, among other characteristics. However, these materials, mostly heterogeneous, possess such behaviors intrinsically related to their microscopic structure, which shows us that a material is the result of a great combination of elements within its composition, which will govern such properties. The materials can be studied at various scales, which will depend on the level of detail being reached, such that it can vary from the particulate medium to its atomic medium. One of the main advantages of multi-scale models is the analyst\'s visualization of the interactions between the constituents of the composite, which allows a better understanding of the behavior of the material and of the deterioration phenomena occurring in the smaller scales that determine the behavior on the larger scale. The objective of the present work is to provide a review of the application of such models, as well as to study such differential elements of the material, in their individuality (as a continuous medium), to then, through a representative volume, determine the properties of the heterogeneous material through of a model, thus representing the behavior of the set of such elements, so as to make possible the evaluation of the impacts of eventual changes in each element in the behavior of the material.
9

Modeling Constitutive Behavior And Hot Rolling Of Steels

Phaniraj, M P 12 1900 (has links)
Constitutive behavior models for steels are typically semi-empirical, however recently neural network is also being used. Existing neural network models are highly complex with a large network structure i.e. the number of neurons and layers. Furthermore, the network structure is different for different grades of steel. In the present study a simple neural network structure, 3:4:1, is developed which models flow behavior better than other models available in literature. Using this neural network structure constitutive behavior of 8 steels: 4 carbon steels, V and V-Ti microalloyed steels, an austenitic stainless steel and a high speed steel could be modeled with reasonable accuracy. The stress-strain behavior for the vanadium microalloyed steel was obtained from hot compression tests carried out at 850-1150 C and 0.1-60 s-1. It is found that a better estimate of the constants in the semi-empirical model developed for this steel could be obtained by simultaneous nonlinear regression. A model that can predict the effect of chemical composition on the constitutive behavior would be industrially useful for e.g., in optimizing rolling schedules for new grades of steel. In the present study, a neural network model, 5:6:1, is developed which predicts the flow behavior for a range of carbon steels. It is found that the effect of manganese is best accounted for by taking Ceq=C+Mn/6 as one of the inputs of the network. Predictions from this model show that the effect of carbon on flow stress is nonlinear. The hot strip mill at Jindal Vijaynagar Steel Ltd., Toranagallu, Karnataka, India, was simulated for calculating the rolling loads, finish rolling temperature (FRT) and microstructure evolution. DEFORM-2d a commercial finite element package was used to simulate deformation and heat transfer in the rolling mill. The simulation was carried out for 18 strips of 2-4 mm thickness with compositions in the range and 0.025-0.139 %C. The rolling loads and FRT could be calculated within 15 % and 15 C respectively. Analysis based on the variation in the roll diameter, roll gap and the effect of roll flattening and temperature of the roll showed that an error of 6 % is inherent in the prediction of loads. Simulation results indicated that strain induced transformation to ferrite occurred in the finishing mill. The microstructure after rolling was validated against experimental data for ferrite microstructure and mechanical properties. The mechanical properties of steels with predominantly ferrite microstructures depend on the prior austenite grain size, strain retained before transformation and cooling rate on the run-out table. A parametric study based on experimental data available in literature showed that a variation in cooling rate by a factor of two on the run-out table gives rise to only a 20 MPa variation in the mechanical properties.
10

Recherche de propriétés de fatigue dommages et dilatance de roche sous chargement cyclique discontinu / Research on fatigue damage and dilatancy properties for salt rock under discontinuous cyclic loading

Fan, Jinyang 19 May 2017 (has links)
Étant donné que le stockage de gaz naturel ou d’air comprimé dans des niveaux souterrains constitués de sel joue un rôle essentiel pour assurer l'approvisionnement en énergie sur le long terme, le gouvernement chinois a construit de nombreux lieu de stockage dans ces niveaux géologiques ces dernières années. En raison des variations saisonnières de la pression gaz / air, les entrepôts subissent des chargements cycliques qui provoquent la fatigue des roches et conduisent à des risques de rupture qu’il faut maîtriser pour des raisons liées à la sécurité et à l'environnement. La compréhension des processus de fatigue discontinue du sel sous chargement cyclique est donc très importante et fait l'objet de cette étude, qui se concentre sur des recherches expérimentales et le développement de modèles constitutifs décrivant la déformation sous fatigue. Cette thèse s’articule suivant la méthodologie suivante : ① des essais de chargement cyclique classique pour étudier les propriétés basiques de la fatigue dans le sel. ② des tests de charge cyclique discontinu pour explorer les processus de fatigue discontinue. ③ l’instrumentation pour détecter les émissions acoustiques afin de suivre l'évolution des dommages causés par la fatigue dans le sel. ④ Le développement à la base des résultats expérimentaux obtenus de modèle constitutif pour la fatigue discontinue. / Since the salt cavern storage of natural gas and compressed air plays a critical role in ensuring the energy supply and adjusting the seasonal imbalance of power, China government has been constructing numerous new storages in recent years. Because of the seasonal of the seasonal variations of the gas/air pressure, the storages undergo cyclic loading, which causes rock fatigue and induces the associated safety and environmental hazards. The investigation of the discontinuous fatigue of salt under cyclic loading is therefore very important and is the subject of this study, which focuses on the experimental investigations and the development of the constitutive models describing the fatigue deformation. This thesis includes the following principal parts: ① Conventional cyclic loading testing to investigate the basic properties of fatigue in salt. ② Discontinuous cyclic loading tests testing to investigate the discontinuous fatigue. ③ Acoustic emission detecting experimentation to track the evolution of the fatigue damage in the salt. ④ Development of the fatigue life model and constitutive model for the discontinuous fatigue, based on the obtained experimental results.

Page generated in 0.0703 seconds