• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparison of constitutive relationships based on kinetic theory of granular gas for three dimensional vibrofluidized beds

Sheikh, Nadeem A. January 2011 (has links)
Granular materials exist in many forms in nature ranging from space debris to sand dunes and from breakfast cereals to pharmaceutical tablets. They can behave like a solid or a viscous fluid or a gas. The gas-like nature of granular materials in rapid flows allows the use of models based on kinetic theory thus revealing in depth complex physics and phenomena. However unlike conventional fluids here the energy balance requires additional dissipation terms as a consequence of inelasticity. The complexity of their interaction and diversity in application has led to numerous studies using experimental methods and numerical simulations in order to determine the most appropriate constitutive relationships for granular gases. With large dissipation the form of the constitutive relationship becomes particularly important, especially in the presence of non-equipartition and anisotropy. This thesis is focused on constitutive models of simple granular flows. A vibrated bed is often used as an idealisation of granular flows, providing a convenient approximation to the simplest type of flow: binary and instantaneous collisions with no rotations. Using finite element method (FE) based COMSOL modules we solve conservation of mass, momentum and energy resulting from granular kinetic theory in axi-symmetric form to generate time and spatial resolved solutions of packing fraction, velocity and granular temperature and compare the predictions to numerical simulation and experiment. At first we show the comparison for two closure sets, one based on a simple near elastic approach while the second based on revised Enskog theory for dense inelastic flows. The results for the second approach show good agreement with the results of previously validated near elastic models and experimental results. The observed differences between the two closure sets are small except for the observation of temperature upturn in a dilute region of the cell away from base. One cause of this is the presence of additional constitutive terms in the balance equations and are a consequence of inelasticity. The models also consider time varying effects at low frequency of excitation. These solutions show existence of wave-like effects in the cell with associated temperature upturn within the hydrodynamic applicability region. Presence of instantaneous cyclic rolling is also seen in both approaches. Evidence from MD simulations and experiments qualitatively support the findings of hydrodynamic models in phase resolved as well as time average behaviour. Subsequently, the frequency of vibration was varied to unlink the wave motion from the bulk temperature. Lack of agreement between experiment and the model predictions are shown to be due to lack of separation of time scale between the grain-base interaction and the base frequency. A sharp decrease of heat flux is measured showing that the energy input is frequency dependent. Analysis of the bulk behaviour shows that at high frequency, hard sphere based models are able to capture the steady state behaviour reasonably well. Further investigations that modulate the driving with a low frequency amplitude change revealed the dynamic nature of flow with the low frequency component. No significant influence of high frequency signal is noted except the reduction of base heat flux. Independent analysis of bulk behaviour for modulated wave excitation using MD simulations and hydrodynamic models showed wave motion in a pattern similar to non-modulated low frequency vibration. A one-dimensional inviscid model was used to determine the underlying scaling relationships for near elastic granular flows. A form of non-dimensionalisation predicts scaling behaviour for the granular flow. The predictions show good results for the dilute flows using hard sphere MD simulations. Results from MD simulations confirm dilute limit scaling of base temperature, packing fractions and heat flux coefficients. At higher inelasticity and loading condition the model fails to capture the real physics suggesting the need for a more accurate model. This simplified model does, however, set the basis for describing the main scalings for vibrofluidized granular beds, and in the future we anticipate that effects of further inelasticity and enhanced density could be incorporated.
2

Part I: Micromechanics of dense suspensions: microscopic interactions to macroscopic rheology & Part II: Motion in a stratified fluid: swimmers and anisotropic particles

Rishabh More (8436243) 18 April 2022 (has links)
<p><b>Part I: Micromechanics of dense suspensions</b></p><p>Particulate suspensions are ubiquitous in the industry & nature. Fresh concrete, uncured solid rocket fuel, & biomass slurries are typical industrial applications, while milk & blood are examples of naturally occurring suspensions. These suspensions exhibit many non-Newtonian properties like rate-dependent rheology & normal stresses. Other than volume fraction, particle material, inter-particle interactions determine the rheological behavior of suspension. The average inter-particle gaps between the neighboring particles decrease significantly as the suspension volume fraction approaches the maximum packing fraction in dense suspensions. So, in this regime, the short-ranged non-contact interactions are important. In addition, the particles come into contact due to asperities on their surfaces. The surface asperities are present even in the case of so-called smooth particles, as particles in real suspensions are not perfectly smooth. Hence, contact forces become one of the essential factors to determine the rheology of suspensions.</p><p> </p><p>Part I of this thesis investigates the effects of microscopic inter-particle interactions on the rheological properties of dense suspensions of non-Brownian particles by employing discrete particle simulations. We show that increasing the roughness size results in a rise in the viscosity & normal stress difference in the suspensions. Furthermore, we observe that the jamming volume fraction decreases with the particle roughness. Consequently, for suspensions close to jamming, increasing the asperity size reduces the critical shear rate for shear thickening (ST) transition, resulting in an early onset of discontinuous ST (DST, a sudden jump in the suspension viscosity) in terms of volume fraction, & enhances the strength of the ST effect. These findings are in excellent agreement with the recent experimental measurements & provide a deeper understanding of the experimental findings. Finally, we propose a constitutive model to quantify the effect of the roughness size on the rheology of dense ST suspensions to span the entire phase-plane. Thus, the constitutive model and the experimentally validated numerical framework proposed can guide experiments, where the particle surface roughness is tuned for manipulating the dense suspension rheology according to different applications. </p><p> </p><p>A typical dense non-Brownian particulate suspension exhibits shear thinning (decreasing viscosity) at a low shear rate followed by a Newtonian plateau (constant viscosity) at an intermediate shear rate values which transition to ST (increasing viscosity) beyond a critical shear rate value and finally, undergoes a second shear-thinning transition at an extremely high shear rate values. This part unifies & quantitatively reproduces all the disparate rate-dependent regimes & the corresponding transitions for a dense non-Brownian suspension with increasing shear rate. The inclusion of traditional hydrodynamic interactions, attractive/repulsive DLVO (Derjaguin and Landau, Verwey and Overbeek), contact interactions, & constant friction reproduce the initial thinning as well as the ST transition. However, to quantitatively capture the intermediate Newtonian plateau and the second thinning, an additional interaction of non-DLVO origin & a decreasing coefficient of friction, respectively, are essential; thus, providing the first explanation for the presence these regimes. Expressions utilized for various interactions and friction are determined from experimental measurements, resulting in an excellent quantitative agreement with previous experiments. </p><p><br></p><p><b>Part II: Motion in a stratified fluid</b></p><p>Density variations due to temperature or salinity greatly influence the dynamics of objects like particles, drops, and microorganisms in oceans. Density stratification hampers the vertical flow & substantially affects the sedimentation of an isolated object, the hydrodynamic interactions between a pair, and the collective behavior of suspensions in various ways depending on the relative magnitude of stratification inertia (advection), and viscous (diffusion) effects. This part investigates these effects and elicits the hydrodynamic mechanisms behind some commonly observed fluid-particle transport phenomena in oceans, like aggregation in horizontal layers. The physical understanding can help us better model these phenomena and, hence, predict their geophysical, engineering, ecological, and environmental implications. </p><p><br></p><p>We investigate the self-propulsion of an inertial swimmer in a linear density stratified fluid using the archetypal squirmer model, which self-propels by generating tangential surface waves. We quantify swimming speeds for pushers (propelled from the rear) and pullers (propelled from the front) by direct numerical solution. We find that increasing stratification reduces the swimming speeds of swimmers relative to their speeds in a homogeneous fluid while reducing their swimming efficiency. The increase in the buoyancy force experienced by these squirmers due to the trapping of lighter fluid in their respective recirculatory regions as they move in the heavier fluid is one of the reasons for this reduction. Stratification also stabilizes the flow around a puller, keeping it axisymmetric even at high inertia, thus leading to otherwise absent stability in a homogeneous fluid. On the contrary, a strong stratification leads to instability in the motion of pushers by making the flow around them unsteady 3D, which is otherwise steady axisymmetric in a homogeneous fluid. Data for the mixing efficiency generated by individual squirmers explain the trends observed in the mixing produced by a swarm of squirmers. </p><p><br></p><p>In addition, the ubiquitous vertical density stratification in aquatic environments significantly alters the swimmer interactions affecting their collective motion &consequently ecological and environmental impact. To this end, we numerically investigate the interactions between a pair of model swimming organisms with finite inertia in a linear density stratified fluid. Depending on the squirmer inertia and stratification, we observe that the squirmer interactions can be categorized as i) pullers getting trapped in circular loops, ii) pullers escaping each other with separating angle decreasing with increasing stratification, iii) pushers sticking to each other after the collision and deflecting away from the collision plane, iv) pushers escaping with an angle of separation increasing with stratification. Stratification also increases the contact time for squirmer pairs. The results presented can help understand the mechanisms behind the accumulation of planktonic organisms in horizontal layers in a stratified environment like oceans and lakes. </p><p><br></p><p>Much work has been done to understand the settling dynamics of spherical particles in a homogeneous and stratified fluid. However, the effects of shape anisotropy on the settling dynamics in a stratified fluid are not entirely understood. To this end, we perform numerical simulations for settling oblate and prolate spheroids in a stratified fluid. We find that both the oblate and prolate spheroids reorient to the edge-wise and partially edge-wise orientations, respectively, as they settle in a stratified fluid completely different from the steady-state broad-side on orientation observed in a homogeneous fluid. We observe that reorientation instabilities emerge when the velocity magnitude of the spheroids falls below a particular threshold. We also report the enhancement of the drag on the particle from stratification. The torque due to buoyancy effects tries to orient the spheroid in an edge-wise orientation, while the hydrodynamic torque tries to orient it to a broad-side orientation. The buoyancy torque dominates below the velocity threshold, resulting in reorientation instability.<br></p>

Page generated in 0.1451 seconds