• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Framework for BIM Model-Based Construction Cost Estimation

Clark, Michael 01 June 2019 (has links) (PDF)
This thesis presents a framework to conduct a quantity take-off (QTO) and cost estimate within the Building Information Modeling (BIM) Environment. The product of this framework is a model-based cost estimating tool. The framework addresses the cost uncertainty associated with the detailed information defining BIM model element properties. This cost uncertainty is due to the lack of available tools that address detailed QTO and cost estimation using solely a BIM platform. In addition, cost estimators have little experience in leveraging and managing information within semantic-rich BIM models. Unmanaged BIM element parameters are considered a source of uncertainty in a model-based cost estimate, therefore they should be managed and quantified as work items. A model-based system, which assists the estimators to conduct a QTO and cost estimate within the BIM environment, is developed. This system harnesses BIM element parameters to drive work items associated with the parameter’s host element. The system also captures the cost of scope not modeled in the design team’s BIM models. The system consists of four modules 1) establishing estimate requirements, 2) planning and structuring the estimate, 3) quantification and costing, and 4) model-based historical cost data collection. The complete system can produce a project cost estimate based on the 3D BIM Model. This framework is supported by a computation engine built within an existing virtual design and construction (VDC) model review software. The computation engine supports BIM authoring and reviewing BIM data. The Framework’s quantification and costing module was compared to existing methods in a case study. The outcomes of the model-based system demonstrated improved cost estimate accuracy in comparison to the BIM QTO method and improved speed compared to the traditional methods. The framework provides a systematic workflow for conducting a detailed cost estimate leveraging the parameters stored in the BIM models.
2

An Energy and Cost Performance Optimization Platform for Commercial Building System Design

Xu, Weili 01 May 2017 (has links)
Energy and cost performance optimization for commercial building system design is growing in popularity, but it is often criticized for its time consuming process. Moreover, the current process lacks integration, which not only affects time performance, but also investors’ confidence in the predicted performance of the generated design. Such barriers keep building owners and design teams from embracing life cycle cost consideration. This thesis proposes a computationally efficient design optimization platform to improve the time performance and to streamline the workflow in an integrated multi-objective building system design optimization process. First, building system cost estimation is typically completed through a building information model based quantity take-off process, which does not provide sufficient design decision support features in the design process. To remedy this issue, an automatic cost estimation framework that integrates EnergyPlus with an external database to perform building systems’ capital and operation costs is proposed. Optimization, typically used for building system design selection, requires a large amount of computational time. The optimization process evaluates building envelope, electrical and HVAC systems in an integrated system not only to explore the cost-saving potential from a single high performance system, but also the interrelated effects among different systems. An innovative optimization strategy that integrates machine learning techniques with a conventional evolutionary algorithm is proposed. This strategy can reduce run time and improve the quality of the solutions. Lastly, developing baseline energy models typically takes days or weeks depending on the scale of the design. An automated system for generating baseline energy model according to ANSI/ASHRAE/IESNA Standard 90.1 performance rating method is thus proposed to provide a quick appraisal of optimal designs in comparison with the baseline energy requirements. The main contribution of this thesis is the development of a new design optimization platform to expedite the conventional decision making process. The platform integrates three systems: (1) cost estimation, (2) optimization and (3) benchmark comparison for minimizing the first cost and energy operation costs. This allows designers to confidently select an optimal design with high performance building systems by making a comparison with the minimum energy baseline set by standards in the building industry. Two commercial buildings are selected as case studies to demonstrate the effectiveness of this platform. One building is the Center for Sustainable Landscapes in Pittsburgh, PA. This case study is used as a new construction project. With 54 million possible design solutions, the platform is able to identify optimal designs in four hours. Some of the design solutions not only save the operation costs by up to 23% compared to the ASHRAE baseline design, but also reduce the capital cost ranging from 5% to 23%. Also, compared with the ASHRAE baseline design, one design solution demonstrates that the high investment of a product, building integrative photovoltaic (BiPV) system, can be justified through the integrative design optimization approach by the lower operation costs (20%) as well as the lower capital cost (12%). The second building is the One Montgomery Plaza, a large office building in Norristown, PA. This case study focuses on using the platform for a retrofit project. The calibrated energy model requires one hour to complete the simulation. There are 4000 possible design solutions proposed and the platform is able to find the optimal design solution in around 50 hours. Similarly, the results indicate that up to 25% capital cost can be saved with $1.7 million less operation costs in 25 years, compare to the ASHRAE baseline design.
3

Prioritization of Potable Water Infrastructure Investments on the Navajo Nation

Chee, Ronson Riley, Chee, Ronson Riley January 2017 (has links)
Notorious for its high poverty levels and low socio-economic status, the Navajo Nation’s socio-economic well-being is hindered greatly in part by the lack of an adequate potable water infrastructure which has resulted in health disparities and has attributed to stunted economic growth within the Nation. Large candidate regional water transmission pipelines projects aimed to meet these needs have been identified. With capital costs exceeding their fiscal capability, decision-makers must choose projects that generate the most bang for the buck. To address these challenges, three (3) interconnected planning tools have been developed: (1) a water pipe installation construction cost estimation model (WaterCOSTE) to improve the accuracy of capital cost estimates; (2) a hydraulic optimization model (WaterTRANS) that improves design efficiency for branched water transmission systems; and (3) a decision support system (DSS) that allows candidate water transmission projects to be ranked while considering economic development, health improvement and environmental protection objectives. Estimates derived from WaterCOSTE are used as input into WaterTRANS to find least-cost system designs. The system costs along with other project data are then input into the DSS to determine project rankings. To demonstrate how the DSS can be used and applied, two candidate projects on the Navajo Nation are evaluated. The tools developed will enable decision-makers to improve planning processes and make wiser investment decisions that will lead to expanding the water infrastructure coverage and living conditions on the Navajo Nation.

Page generated in 0.1924 seconds