• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise da evolução temporal de dados métricos

Fogaça, Isis Caroline Oliveira de Sousa 22 November 2016 (has links)
Submitted by Alison Vanceto (alison-vanceto@hotmail.com) on 2017-03-17T12:24:22Z No. of bitstreams: 1 DissCOSF.pdf: 3751345 bytes, checksum: 50050f093a497de77a404a0a957ad02c (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-04-24T13:10:09Z (GMT) No. of bitstreams: 1 DissCOSF.pdf: 3751345 bytes, checksum: 50050f093a497de77a404a0a957ad02c (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-04-24T13:10:17Z (GMT) No. of bitstreams: 1 DissCOSF.pdf: 3751345 bytes, checksum: 50050f093a497de77a404a0a957ad02c (MD5) / Made available in DSpace on 2017-04-24T13:13:58Z (GMT). No. of bitstreams: 1 DissCOSF.pdf: 3751345 bytes, checksum: 50050f093a497de77a404a0a957ad02c (MD5) Previous issue date: 2016-11-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / The expansion of different areas of knowledge through many types of information brought the necessity to support complex data (images, sounds, videos, strings, DNA chains, etc.), that do not have a Total Order Relationship and need other management mechanisms, like the contentbased retrieval. In general, they are represented in metric space domains, where we have only the elements and the distances between them. Through the characteristics extracted from them, we perform the similarity search. Considering the necessity to associate temporal information on these data in many applications, this work aims to analyze the temporal evolve of metric data. One alternative for this is embedding them into a multidimensional space to allow trajectories estimates. We studied different methods of embedding and analyzed how this affected the data’s distribution and, consequently, the estimates. Two new methods were purposed to estimate an element’s status on a different time from that available in database, in order to reduce the number of non-relevant elements on search results. These methods are based on radius search reduction (range) and evaluation of retrieved element’s proximity by using an approximation of reverse k- NN. We performed experiments which showed that purposed methods could improve the estimate’s result, that used to be performed only using k-NN searches. / A expansão de diferentes áreas do conhecimento com os diversos tipos de informação tornou necessário o suporte a dados complexos (imagens, sons, vídeos, cadeias de DNA, entre outros), que por não possuírem uma Relação de Ordem Total (ROT), necessitam de outros mecanismos de gerenciamento, como a recuperação por conteúdo. Em geral, esses dados são representados em domínios de espaços métricos, onde apenas se tem os elementos e as distâncias entre eles. Através das características extraídas dos mesmos, realiza-se consultas por similaridade. Considerando a necessidade de associar a informação temporal a esses dados em muitas aplicações, este trabalho visa analisar a evolução temporal dos dados métricos. Para isso, uma alternativa é mapeá-los para um espaço multidimensional, a fim possibilitar a estimativa de trajetórias. Neste trabalho, foram estudados diferentes métodos de mapeamento, sendo também analisado como o mapeamento afetou a distribuição dos mesmos e, por conseguinte, a realização das estimativas. Foram propostos dois novos métodos para estimar o estado de um elemento em um tempo diferente daqueles disponíveis na base de dados, com o objetivo de reduzir no conjunto resposta a quantidade de elementos não relevantes. Os métodos propostos são baseados na redução do raio de consulta na região estimada pela delimitação do raio de consulta (range) e a avaliação da proximidade dos elementos retornados utilizando verificação (aproximação) do k-NN reverso. Foram realizados experimentos que mostraram que os métodos propostos melhoraram o resultado final das estimativas, que anteriormente eram realizadas apenas com consultas aos vizinhos mais próximos.
2

Processamento de consultas analíticas com predicados de similaridade entre imagens em ambientes de data warehousing / Processing of analytical with similarity search predicates over images in data warehousing environments

Jefferson William Teixeira 29 May 2015 (has links)
Um ambiente de data warehousing oferece suporte ao processo de tomada de decisão. Ele consolida dados de fontes de informação distribuições, autônomas e heterogêneas em um único componente, o data warehouse, e realiza o processamento eficiente de consultas analíticas, denominadas OLAP (on-line analytical processing). Um data warehouse convencional armazena apenas dados alfanuméricos. Por outro lado, um data warehouse de imagens armazena, além desses dados convencionais, características intrínsecas de imagens, permitindo a realização de consultas analíticas estendidas com predicados de similaridade entre imagens. Esses ambientes demandam, portanto, a criação de estratégias que possibilitem o processamento eficiente dessas consultas complexas e custosas. Apesar de haver na literatura trabalhos voltados a índices bitmap para ambientes de data warehousing e métodos de acesso métricos para melhorar o desempenho de consultas por similaridade entre imagens, no melhor do nosso conhecimento, não há uma técnica que investigue essas duas questões em um mesmo contexto. Esta dissertação visa preencher essa lacuna na literatura por meio das seguintes contribuições: (i) proposta do ImageDWindex, um mecanismo para a otimização de consultas analíticas estendidas com predicados de similaridade entre imagens; e (ii) definição de diferentes estratégias de processamento de consultas sobre data warehouses de imagens usando o ImageDW-index. Para validar as soluções propostas, foram desenvolvidas duas outras contribuições secundárias, que são: (iii) o ImageDW-Gen, um gerador de dados com o objetivo de povoar o data warehouse de imagens; e (iv) a proposta de quatro classes de consulta, as quais enfocam em diferentes custos de processamento dos predicados de similaridade entre imagens. Utilizando o ImageDW-Gen, foram realizados testes de desempenho para investigar as vantagens introduzidas pelas estratégias propostas, de acordo com as classes de consultas definidas. Comparado com o trabalho mais correlato existente na literatura, o uso do ImageDWindex proveu uma melhora no desempenho do processamento de consultas IOLAP que variou em média de 55,57% até 82,16%, considerando uma das estratégias propostas. / A data warehousing environment offers support to the decision-making process. It consolidates data from distributed, autonomous and heterogeneous information sources into one of its main components, the data warehouse. Furthermore, it provides effcient processing of analytical queries (i.e. OLAP queries). A conventional data warehouse stores only alphanumeric data. On the other hand, an image data warehouse stores not only alphanumeric data but also intrinsic features of images, thus allowing data warehousing environments to perform analytical similarity queries over images. This requires the development of strategies to provide efficient processing of these complex and costly queries. Although there are a number of approaches in the literature aimed at the development of bitmap index for data warehouses and metric access methods for the efficient processing of similarity queries over images, to the best of our knowledge, there is not an approach that investigate these two issues in the same setting. In this research, we fill this gap in the literature by introducing the following main contributions: (i) the proposal of the ImageDW-index, an optimization mechanism aimed at the efficient processing of analytical queries extended with similarity predicates over images; and (ii) definition of different processing strategies for image data warehouses using the ImageDW-index. In order to validate these main proposals, we also introduce two secondary contributions, as follows: (iii) the ImageDW-Gen, a data generator to populate image data warehouses; and (iv) the proposal of four query classes, each one enforcing different query processing costs associated to the similarity predicates in image data warehousing environments. Using the ImageDW-Gen, performance tests were carried out in order to investigate the advantages introduced by the proposed strategies, according to the query classes. Compared to the most related work available in the literature, the ImageDW-index provided a performance gain that varied from 55.57% to 82.16%, considering one of the proposed strategies.
3

Operação de busca exata aos K-vizinhos mais próximos reversos em espaços métricos / Answering exact reverse k-nerarest neighbors queries in metric space

Willian Dener de Oliveira 19 March 2010 (has links)
A complexidade dos dados armazenados em grandes bases de dados aumenta cada vez mais, criando a necessidade de novas operações de consulta. Uma classe de operações que tem apresentado interesse crescente são as chamadas Consultas por Similaridade, sendo as mais conhecidas as consultas por Abrangência (\'R IND. q\') e por k-Vizinhos mais Proximos (kNN), sendo que esta ultima obtem quais são os k elementos armazenados mais similares a um dado elemento de referência. Outra consulta que é interessante tanto para consultas diretas quanto como parte de operações de análises mais complexas e a operação de consulta aos k-Vizinhos mais Próximos Reversos (RkNN). Seu objetivo e obter todos os elementos armazenados que têm um dado elemento de referência como um dos seus k elementos mais similares. Devido a complexidade de execução da operação de RkNN, a grande maioria das soluções existentes restringem-se a dados representados em espaços multidimensionais euclidianos (nos quais estão denidas tambem operações cardinais e topológicas, além de se considerar a similaridade como sendo a distância Euclidiana entre dois elementos), ou então obtém apenas respostas aproximadas, sujeitas a existência de falsos negativos. Várias aplicações de análise de dados científicos, médicos, de engenharia, financeiros, etc. requerem soluções eficientes para o problema da operação de RkNN sobre dados representados em espaços métricos, onde os elementos não podem ser considerados estar em um espaço nem Euclidiano nem multidimensional. Num espaço métrico, além dos próprios elementos armazenados existe apenas uma função de comparação métrica entre pares de objetos. Neste trabalho, são propostas novas podas de espaço de busca e o algoritmo RkNN-MG que utiliza essas novas podas para solucionar o problema de consultas RkNN exatas em espaços métricos sem limitações. Toda a proposta supõe que o conjunto de dados esta em um espaço métrico imerso isometricamente em espaço euclidiano e utiliza propriedades da geometria métrica válida neste espaço para realizar podas eficientes por lei dos cossenos combinada com as podas tradicionais por desigualdade triangular. Os experimentos demonstram comparativamente que as novas podas são mais eficientes que as tradicionais podas por desigualdade triangular, tendo desempenhos equivalente quando comparadas em conjuntos de alta dimensionalidade ou com dimensão fractal alta. Assim, os resultados confirmam as novas podas propostas como soluções alternativas eficientes para o problema de consultas RkNN / Data stored in large databases present an ever increasing complexity, pressing for the development of new classes of query operators. One such class, which is enticing an increasing interest, is the so-called Similarity Queries, where the most common are the similarity range queries (\'R IND. q\') and the k-nearest neighbor queries (kNN). A k-nearest neighbor query aims at retrieving the k stored elements nearer (or more similar) to a given reference element. Another important similarity query is the reverse k-nearest neighbor (RkNN), useful both for queries posed directly by the analyst and for queries that are part of more complex analysis processes. The objective of a reverse k-nearest neighbor queries is obtaining the stored elements that has the query reference element as one of their k-nearest neighbors. As the RkNN operation is a rather expensive operation, from the computational standpoint, most existing solutions only solve the query when applied over Euclidean multidimensional spaces (as these spaces also define cardinal and topological operations besides the Euclidean distance between pairs of elements) or retrieve only approximate answers, where false negatives can occur. Several applications, like the analysis of scientific, medical, engineering or financial data, require efficient and exact answers for the RkNN queries over data which is frequently represented in metric spaces, that is where no other property besides the similarity measure exists. Therefore, for applications handling metrical data, the assumption of Euclidean metric or even multidimensional data cannot be used. In this work, we propose new pruning rules based on the law of cosines, and the RkNN-MG algorithm, which uses them to solve RkNN queries in a way that is exact, faster than the existing approaches, that is not limited for any value of k, and that can be applied both over static and over dynamic datasets. The new pruning rules assume that the data set is in a metric space that can be embedded into an Euclidean space and use metric geometry properties valid in this space to perform effective pruning based on the law of cosines combined with the traditional pruning based on the triangle inequality property. The experiments show that the new pruning rules are alkways more efficient than the traditional pruning rules based solely on the triangle inequality. The experiments show that for high high dimensionality datasets, or for metric datasets with high fractal dimensionality, the performance improvement is smaller than for for lower dimensioinality datasets, but it\'s never worse. Thus, the results confirm that the our pruning rules are efficient alternative to solve RkNN queries in general
4

Operação de busca exata aos K-vizinhos mais próximos reversos em espaços métricos / Answering exact reverse k-nerarest neighbors queries in metric space

Oliveira, Willian Dener de 19 March 2010 (has links)
A complexidade dos dados armazenados em grandes bases de dados aumenta cada vez mais, criando a necessidade de novas operações de consulta. Uma classe de operações que tem apresentado interesse crescente são as chamadas Consultas por Similaridade, sendo as mais conhecidas as consultas por Abrangência (\'R IND. q\') e por k-Vizinhos mais Proximos (kNN), sendo que esta ultima obtem quais são os k elementos armazenados mais similares a um dado elemento de referência. Outra consulta que é interessante tanto para consultas diretas quanto como parte de operações de análises mais complexas e a operação de consulta aos k-Vizinhos mais Próximos Reversos (RkNN). Seu objetivo e obter todos os elementos armazenados que têm um dado elemento de referência como um dos seus k elementos mais similares. Devido a complexidade de execução da operação de RkNN, a grande maioria das soluções existentes restringem-se a dados representados em espaços multidimensionais euclidianos (nos quais estão denidas tambem operações cardinais e topológicas, além de se considerar a similaridade como sendo a distância Euclidiana entre dois elementos), ou então obtém apenas respostas aproximadas, sujeitas a existência de falsos negativos. Várias aplicações de análise de dados científicos, médicos, de engenharia, financeiros, etc. requerem soluções eficientes para o problema da operação de RkNN sobre dados representados em espaços métricos, onde os elementos não podem ser considerados estar em um espaço nem Euclidiano nem multidimensional. Num espaço métrico, além dos próprios elementos armazenados existe apenas uma função de comparação métrica entre pares de objetos. Neste trabalho, são propostas novas podas de espaço de busca e o algoritmo RkNN-MG que utiliza essas novas podas para solucionar o problema de consultas RkNN exatas em espaços métricos sem limitações. Toda a proposta supõe que o conjunto de dados esta em um espaço métrico imerso isometricamente em espaço euclidiano e utiliza propriedades da geometria métrica válida neste espaço para realizar podas eficientes por lei dos cossenos combinada com as podas tradicionais por desigualdade triangular. Os experimentos demonstram comparativamente que as novas podas são mais eficientes que as tradicionais podas por desigualdade triangular, tendo desempenhos equivalente quando comparadas em conjuntos de alta dimensionalidade ou com dimensão fractal alta. Assim, os resultados confirmam as novas podas propostas como soluções alternativas eficientes para o problema de consultas RkNN / Data stored in large databases present an ever increasing complexity, pressing for the development of new classes of query operators. One such class, which is enticing an increasing interest, is the so-called Similarity Queries, where the most common are the similarity range queries (\'R IND. q\') and the k-nearest neighbor queries (kNN). A k-nearest neighbor query aims at retrieving the k stored elements nearer (or more similar) to a given reference element. Another important similarity query is the reverse k-nearest neighbor (RkNN), useful both for queries posed directly by the analyst and for queries that are part of more complex analysis processes. The objective of a reverse k-nearest neighbor queries is obtaining the stored elements that has the query reference element as one of their k-nearest neighbors. As the RkNN operation is a rather expensive operation, from the computational standpoint, most existing solutions only solve the query when applied over Euclidean multidimensional spaces (as these spaces also define cardinal and topological operations besides the Euclidean distance between pairs of elements) or retrieve only approximate answers, where false negatives can occur. Several applications, like the analysis of scientific, medical, engineering or financial data, require efficient and exact answers for the RkNN queries over data which is frequently represented in metric spaces, that is where no other property besides the similarity measure exists. Therefore, for applications handling metrical data, the assumption of Euclidean metric or even multidimensional data cannot be used. In this work, we propose new pruning rules based on the law of cosines, and the RkNN-MG algorithm, which uses them to solve RkNN queries in a way that is exact, faster than the existing approaches, that is not limited for any value of k, and that can be applied both over static and over dynamic datasets. The new pruning rules assume that the data set is in a metric space that can be embedded into an Euclidean space and use metric geometry properties valid in this space to perform effective pruning based on the law of cosines combined with the traditional pruning based on the triangle inequality property. The experiments show that the new pruning rules are alkways more efficient than the traditional pruning rules based solely on the triangle inequality. The experiments show that for high high dimensionality datasets, or for metric datasets with high fractal dimensionality, the performance improvement is smaller than for for lower dimensioinality datasets, but it\'s never worse. Thus, the results confirm that the our pruning rules are efficient alternative to solve RkNN queries in general
5

Algoritmos de remoção para a estrutura de indexação Onion-tree

Marrach, Debora Gonçalves Rodrigues 27 August 2013 (has links)
Made available in DSpace on 2016-06-02T19:06:10Z (GMT). No. of bitstreams: 1 5601.pdf: 3183108 bytes, checksum: 0ac17d1e4d1f1556e3258bf2bd169cf2 (MD5) Previous issue date: 2013-08-27 / The Onion-tree is an efficient metric access method based on main memory for similarity search. The Onion-tree has already provided algorithms for insertion and processing of similarity queries (range query and k-nearest neighbors query). However, in the literature no algorithm has been proposed for removing elements in Onion-tree. For this index be incorporated into a database management system, it is necessary the proposal and implementation of at least one algorithm of deletion. This master's research focused primarily on the implementation and performance evaluation of the algorithms proposed for logical deletion in (CARÉLO et al., 2011). The proposal presented in (CARÉLO et al., 2011) led to the implementation of three algorithms, called LogicalDelete, ReplaceReducing and ReplaceGrowing. The first algorithm applies the logic deletion, while the other two algorithms are specializations adding special treatment for the deletion of elements in internal nodes with children exclusively leaf. The ReplaceReducing algorithm allows the reduction of the radius of the node that contains de deleted element. On the other hand, the ReplaceGrowing algorithm allows increasing this radius. In addition, algorithms have been proposed and evaluated for physical deletion that can be applied at any level of the Onion-tree. The algorithm ReorgAll rearranges all the elements in the hierarchy of the node that contains de deleted element, by physically removing the elements and reinserting them using the insertion algorithm, and algorithm PromoteNode, which extends the algorithm ReorgAll, promotes, when exists conditions for such operation, other node to replace the one that contains the deleted element. Experimental evaluation of the algorithms LogicalDelete, ReplaceReducing and ReplaceGrowing showed that the algorithm LogicalDelete is more cost effective than the algorithms ReplaceReducing and ReplaceGrowing in query processing after the deletion of elements. Experimental evaluation of physical removal algorithms showed that the promotion of a node to replace the removed node has advantages over the simple reorganization of the hierarchy of the node that contains the deleted element. Besides presenting lower cost of deletion of elements, the algorithm PromoteNode also outperformed the algorithm ReorgAll in query processing after removing elements. When compared with the logic deletion algorithm, for a large amount of deletion operations, the algorithms ReorgAll and PromoteNode produced performance gain of 21.6% in range query processing. However, in the same comparison, these algorithms have a much higher cost of deletion. / A Onion-tree é um método de acesso métrico eficiente baseado em memória primária para pesquisa por similaridade. Esta estrutura de indexação já provê algoritmos para a inserção de elementos e o processamento de consultas por similaridade dos tipos Range Query (consulta por abrangência) e KNN (consulta aos k-vizinhos mais próximos). Entretanto, ainda não foi proposto na literatura um algoritmo para a remoção de elementos na Onion-tree. Para que a Onion-tree possa ser efetivamente incorporada a um Sistema Gerenciador de Banco de Dados, portanto, é necessário a proposta e a implementação de, pelo menos, um algoritmo de remoção. Esta pesquisa de mestrado se concentrou primeiramente na implementação e na avaliação de desempenho do algoritmo de remoção lógica proposto em (CARÉLO et al., 2011). A proposta feita em (CARÉLO et al., 2011) deu origem à implementação de três algoritmos de remoção lógica, denominados LogicalDelete, ReplaceReducing e ReplaceGrowing. O algoritmo LogicalDelete aplica a remoção lógica, enquanto os algoritmos ReplaceReducing e ReplaceGrowing são especializações da remoção lógica, adicionando tratamento especial para a remoção de elementos em nós internos com filhos exclusivamente folha. O algoritmo ReplaceReducing permite a diminuição do raio do nó que sofreu a remoção. De forma antagônica, o algoritmo ReplaceGrowing permite o aumento deste raio. Adicionalmente, foram propostos e avaliados algoritmos de remoção física que podem ser aplicados em qualquer nível da estrutura da Onion-tree: O algoritmo ReorgAll reorganiza todos os elementos da hierarquia do nó que sofreu a remoção, removendo-os fisicamente e reinserindo-os no índice usando o algoritmo de inserção de elementos; e o algoritmo PromoteNode, o qual estende o algoritmo ReorgAll, promovendo, quando houver condições para tal, outro nó em substituição àquele que sofreu a remoção. Os testes experimentais dos algoritmos de remoção LogicalDelete, ReplaceReducing e ReplaceGrowing mostraram que o algoritmo LogicalDelete tem melhor relação custo/benefício que os algoritmos ReplaceReducing e ReplaceGrowing no processamento de consultas por abrangência após a remoção de elementos. Os testes experimentais dos algoritmos de remoção física mostraram que a promoção de um nó, em substituição ao nó removido, efetuada pelo algoritmo PromoteNode apresenta vantagens em relação a simples reorganização da hierarquia que sofreu a remoção. Além de apresentar menor custo de remoção dos elementos no índice, o algoritmo PromoteNode também apresenta desempenho superior no processamento de consultas por abrangência após a remoção de elementos. Quando comparados com o algoritmo de remoção lógica, para uma grande quantidade de operações de remoção, os algoritmos ReorgAll e PromoteNode produziram melhora de 21,6% no desempenho do processamento de consultas por abrangência. Porém, na mesma comparação, estes algoritmos apresentaram custo de remoção muito maior.
6

Inclusão de diversidade em consultas aos vizinhos mais próximos usando descritores distintos para similaridade e diversidade

Cardoso, Ana Claudia 18 April 2017 (has links)
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-09-13T18:11:26Z No. of bitstreams: 1 DissACC.pdf: 1668214 bytes, checksum: 82bf6ff6918613ce74cc691a951a22b0 (MD5) / Approved for entry into archive by Ronildo Prado (bco.producao.intelectual@gmail.com) on 2018-01-25T17:53:52Z (GMT) No. of bitstreams: 1 DissACC.pdf: 1668214 bytes, checksum: 82bf6ff6918613ce74cc691a951a22b0 (MD5) / Approved for entry into archive by Ronildo Prado (bco.producao.intelectual@gmail.com) on 2018-01-25T17:54:04Z (GMT) No. of bitstreams: 1 DissACC.pdf: 1668214 bytes, checksum: 82bf6ff6918613ce74cc691a951a22b0 (MD5) / Made available in DSpace on 2018-01-25T18:00:35Z (GMT). No. of bitstreams: 1 DissACC.pdf: 1668214 bytes, checksum: 82bf6ff6918613ce74cc691a951a22b0 (MD5) Previous issue date: 2017-04-18 / Não recebi financiamento / One of the ways to recover images in a database is through similarity queries. Using characteristics extracted from these images, such as color, shape or texture, this work seeks to identify similarities to a central query element. However, the results may be very similar to each other, which is not always the expected result. In addition to the redundancy in the results, the problem of the ’semantic gap’, which is a divergence in the evaluation of similarity between images performed by the computer considering its numerical representation (low level characteristics) and the human perception about the image (high level characteristics). In order to improve the quality of the results, we sought to minimize the issue of redundancy and the ’semantic gap’ through the use of more than one descriptor in queries for similarity. We sought to explore the inclusion of diversity using one descriptor to treat similarity and another descriptor to treat diversity, more generally a metric space for similarity and another for diversity. For the implementation of the query by similarity was used the consultation to several neighbors closer. Considering that the descriptors may be distinct and one of them may have greater numerical representativeness, it was necessary to do the normalization, considering the methods of normalization by the greater distance and normalization by the greater approximate distance with balancing by the intrinsic dimension. An exhaustive search algorithm was used to perform the tests. The experiments were carried out in a classified database. To evaluate the semantic quality of the results, a measure was proposed that evaluates the inclusion of diversity considering the diversity present in the query only considering the similarity and the maximum diversity that can be included. A comparison was made between the result obtained and the considered ideal, which refers to the value of l defined by the user himself. By comparing the results obtained with the results obtained in the queries for a single descriptor, the evaluation of the included diversity followed the trend of l, which allows to say that normalization and balancing is necessary. In addition, it is intended in the future to study new ways of normalizing. / Uma das formas para se recuperar imagens em banco de dados, é através de consultas por similaridade. Utilizando características extraídas dessas imagens, como cor, forma ou textura, busca-se identificar semelhanças a um elemento central de consulta. No entanto, os resultados nas consultas podem ser muito semelhantes entre si, o que nem sempre é o resultado esperado. Além da redundância nos resultados, deve-se destacar o problema do ‘gap semântico’, que é a divergência na avaliação da similaridade entre imagens realizada pelo computador considerando a sua representação numérica (características de baixo nível) e a percepção humana sobre a imagem (características de alto nível). Com o objetivo de melhorar a qualidade dos resultados nas consultas buscou-se minimizar a questão da redundância e do ‘gap semântico’ através da utilização de mais de um descritor nas consultas por similaridade. Buscou-se explorar a inclusão de diversidade utilizando-se um descritor para tratar a similaridade e outro descritor para tratar a diversidade, mais genericamente, um espaço métrico para similaridade e outro para a diversidade. Para a implementação da consulta por similaridade utilizou-se a consulta aos vizinhos diversos mais próximos. Considerando-se que os descritores utilizados podem ser distintos e que um deles possa ter maior representatividade numérica do que o outro, foi necessário fazer a normalização, sendo considerados os métodos da normalização pela maior distância e normalização pela maior distancia aproximada com balanceamento pela dimensão intrínseca. Para a realização dos testes utilizou-se um algoritmo de busca exaustiva. Os experimentos foram realizados em uma base de dados classificada. Para avaliar a qualidade semântica dos resultados foi proposta uma medida que avalia a inclusão de diversidade considerando a diversidade presente na consulta apenas considerando a similaridade e a diversidade máxima que pode ser incluída. Foi feita uma comparação entre o resultado obtido e o considerado ideal, que refere-se ao valor de l definido pelo próprio usuário. Comparando-se os resultados alcançados com os resultados obtidos nas consultas para um único descritor, a avaliação da diversidade incluída acompanhou a tendência de l, o que permite dizer que a normalização e balanceamento é necessário. Além disso, pretende-se futuramente estudar novas formas de normalizar.

Page generated in 0.1867 seconds