Spelling suggestions: "subject:"contact line"" "subject:"contact eine""
11 |
Droplet Impingement on Superhydrophobic SurfacesClavijo Angeles, Cristian Esteban 01 April 2016 (has links)
This dissertation explores the physics of droplet impingement on superhydrophobic surfaces. The research is divided in three categories. First, the effect of a slip boundary condition on droplet spreading/retracting is considered. A model is developed based on energy conservation to evaluate spreading rates on surfaces exhibiting isotropic and anisotropic slip. The results show that larger slip causes the droplet to spread out farther owing to reduced friction at the interface for both slip scenarios. Furthermore, effects of slip become magnified for large Weber numbers due to the larger solid-liquid contact area during the process. On surfaces with anisotropic slip, droplets adopt an elliptical shape following the azimuthal contour of the slip on the surface. It is common for liquid to penetrate into the cavities at the superhydrophobic interface following droplet impact. Once penetrated, the flow is said to be in the Wenzel state and many superhydrophobic advantages, such as self-cleaning and drag-reduction, become negated. Transition from the Wenzel to the Cassie state (liquid resides above the texture) is referred to as dewetting and is the focus of the second piece of this dissertation. Micro-pillar pitch, height and temperature play a role on dewetting dynamics. The results show that dewetting rates increase with increasing pillar height and increasing surface temperature. A scaling model is constructed to obtain an explanation for the experimental observations and suggests that increasing pillar height increasing the driving dewetting force, while increasing surface temperature decreases dissipation. The last piece of work of this dissertation entails droplet impingement on superheated surfaces (100°C - 400°C). We find that the Leidenfrost point (LFP) occurs at a lower temperature on a hydrophobic surface than a hydrophilic one, where the LFP refers to the lowest temperature at which secondary atomization ceases to occur. This behavior is attributed to the manner in which vapor bubbles grow at the solid-liquid interface. Also in this work, high-speed photographs reveal that secondary atomization can be significantly suppressed on a superhydrophobic surface owing to the micro-pillar forest which allows vapor to escape hence minimizing bubble formation within the droplet. However, a more in-depth study into different superhydrophobic texture patterns later reveals that atomization intensity can significantly increase for small pitch values given the obstruction to vapor flow presented by the increased frequency of the pillars.
|
12 |
Investigation of vortical and interfacial particulate flowsMadhavan, Srinath 11 1900 (has links)
Nonlinearity in the Navier-Stokes equations can originate from a variety of sources, such as contributions stemming from the advective term, constitutive closure models or external factors such as chemical reactions and capillarity. Needless to say, a combination of any of the above sources has the potential to exasperate the problem significantly. This dissertation explores cases that predominantly feature advective and/or capillary effects. In particular, we first consider the inertia-dominated problem of single-phase flow past a confined square cylinder, followed by a study focused on the low-Re dynamics of rigid particles straddling non-planar interfaces.
The first part of the thesis investigates transient, three-dimensional, incompressible and isothermal flow of a Newtonian fluid past a symmetrically confined obstacle at zero incidence. Results from both Laser Doppler Velocimetry (LDV) experiments and direct simulations upto Re = 250 have been reported. Beyond the onset of instability (Recr ≈ 58), an inflexion point around Re ≈ 115 is detected for the Strouhal number with no evidence of hysteresis in any of the measurements. Furthermore, incommensurate frequencies observed in the range 127 ≤ Re ≤ 175 suggest a quasi-periodic transition to three-dimensionality. This is shown to be followed by an intermediate periodic window starting around Re ≈ 180. Fourier analysis and spanwise velocity correlations are then used to characterize the observed phenomena. Subsequent analysis of consolidated data suggest that only a parametric variation of transverse and spanwise blockage ratios can bring closure to the subject of bluff-body wake transitions.
The second part of the thesis implements and validates a physically consistent continuum model for the Moving Contact Line (MCL) through direct simulations. After elaborately discussing the MCL conundrum, a fundamental framework for the simulations is outlined in a theoretical orientation which combines the Level set method with a Fictitious domain approach in a finite-element scheme. The thesis objectives are then realized through simulation of various case studies that show favorable comparisons with theoretical and/or published experimental data. In short, the current work successfully illustrates the potential of novel boundary conditions (such as the GNBC) to accurately describe MCL dynamics. / Chemical Engineering
|
13 |
Contact Line Dynamics on Heterogeneous SubstratesHerde, Daniel 21 January 2014 (has links)
No description available.
|
14 |
Investigation of vortical and interfacial particulate flowsMadhavan, Srinath Unknown Date
No description available.
|
15 |
[en] EXPERIMENTAL STUDY OF LIQUID TRANSFER FROM A PLATE AND A ROTATING ROLL / [pt] ESTUDO EXPERIMENTAL DA TRANSFERÊNCIA DE UMA GOTA DE LÍQUIDO ENTRE UMA SUPERFÍCIE PLANA E UM CILINDRO EM ROTAÇÃOBRUNO PEREIRA DE MACEDO 24 January 2018 (has links)
[pt] O processo de impressão por rotogravura é largamente usado na manufatura de revistas pela sua alta velocidade de aplicação. As aplicações deste processo vêm sendo ampliadas para o processo de impressão de circuitos eletrônicos em substratos flexíveis, onde o grau de precisão e controle são bem maiores, já que falhas na impressão levam ao mal funcionamento dos dispositivos fabricados. O processo consiste na transferência de fluido de uma superfície a outra formando uma ponte de fluido. No entanto, essa operação aparentemente simples apresenta mecanismos ainda não bem compreendidos que têm efeito direto na precisão do padrão impresso. O entendimento dos mecanismos de transferência de fluidos entre duas superfícies formando pontes de fluido vai além dos processos de impressão, como tribologia, biologia, recuperação de óleo e microfluídica. Muitos estudos têm sido direcionados para o entendimento da transferência de fluidos entre superfícies e cavidades através do uso de simulação computacional; entretanto os ensaios experimentais são escassos dada a complexidade na execução dos mesmos, principalmente pela pequena dimensão e alta velocidade do escoamento. O objetivo principal
deste trabalho é analisar experimentalmente a dinâmica da transferência de uma gota para um cilindro de borracha em movimento rotacional. O ensaio experimental foi realizado utilizando uma mesa de cobrimento com cilindro motorizado e uma câmera de alta velocidade para visualizar o processo. Os resultados mostram como as propriedades dos fluidos, o número de capilaridade, a posição relativa do cilindro
com relação à superfície da gota e a interação fluido-estrutura (molhabilidade) influenciam
o processo de formação da ponte de fluido, o volume de fluido transferido entre as superfícies e o padrão impresso. / [en] Gravure printing process is widely used for the production of magazines
because of its high speed. Gravure printing application is being expanded to flexible
electronic circuits, at which the degree of precision is much higher, since small
printing defects can lead to circuit malfunctioning. Gravure printing process consists
in liquid transfer from one surface to another, forming a liquid bridge. However,
this seemingly simple operation has flow phenomena not well understood that
have a direct impact on the printing pattern. Liquid transfer forming liquid bridges
goes beyond printing processes and includes applications such as tribology, biology,
oil recovery and microfluidics. There are many studies driven towards the fundamental
understanding of liquid transfer between surfaces and cavities by computational
simulation. However, experimental analyses are rare because of the complexity
of the problem, mainly associated with the small scale and high speed of the
flow. The goal of this research is to analyze experimentally the liquid transfer dynamics
of a liquid drop to a rotating cylinder. The experiments were done using a
draw-down coating apparatus with a rotating roll and a high-speed camera for flow
visualization. The results show how different liquid properties, surface wettability
and operating conditions affect the formation of the liquid bridge, the volume of
liquid transfer and the printing pattern.
|
16 |
Contact Angle Hysteresis: Implications for Fluid FlowAndrade, Cristhian F. 06 1900 (has links)
Contact angle behavior controls the spreading, sticking, or movement of fluid droplets on top of solid substrates, and the immiscible displacement of mixed fluids in porous media. Therefore, it influences applications such as oil recovery, CO2 geological storage, water transport in unsaturated soils, and DNAPL soil remediation techniques. The attraction forces and geometrical-molecular arrangement at the atomic scale define the strength of the interfacial tension that changes in response to changes in temperature, pressure, or the fluid composition within the system. Contact line behavior such as contact line pinning or depinning, microscale roughness, and changes in interfacial tensions influence advancing and receding contact angles.
This study consists of a comprehensive database of published advancing and receding contact angles to understand the underlying mechanisms of contact line pinning and depinning and the implications of these phenomena on advancing and receding contact angles. Calcite experiments that investigate advancing and receding contact angle measurements as a function of ionic concentration complement the published literature. Critical results include: an advancing contact angle trend with calcite as a function of ionic concentration, a point of minimum contact angle hysteresis when brine concentrations are close to 0.1 M, and that contact angle behavior depends on cation type and the calcite surface anisotropy.
Contact line pinning prevents flow and increases contact angle hysteresis. An analysis of the database suggests that the wide range of contact angle hysteresis of calcite and quartz with water results both from hydrogen bonds and microscale roughness at the surface which leads to pinned contact lines. The Jamin effect reduces significantly in calcite when the resultant injection brines have an ionic concentration close to 0.1 M. Thus, the pressure difference required to displace a non-wetting fluid for a wetting fluid reduces, and leads to enhanced recovery of trapped oil, gas or DNAPL.
|
17 |
Fluctuations, Phase Separation and Wetting Films near Liquid-Gas Critical PointOprisan, Ana 22 May 2006 (has links)
Gravity on Earth limits the study of the properties of pure fluids near critical point because they become stratified under their own weight. Near the critical point, all thermodynamic properties either diverge or converge and the heating and cooling cause instabilities of the convective flow as a consequence of the expansibility divergence. In order to study boiling, fluctuation and phase separation processes near the critical point of pure fluids without the influence of the Earth's gravity, a number of experiments were performed in the weightlessness of Mir space station. The experimental setup called ALICE II instrument was designed to suppress sedimentation and buoyancy-driven flow. Another set of experiments were carried out on Earth using a carefully density matched system of deuterated methanolcycloxexane to observe critical fluctuations directly. The set of experiments performed on board of Mir space station studied boiling and wetting film dynamics during evaporation near the critical point of two pure fluids (sulfur hexafluoride and carbon dioxide) using a defocused grid method. The specially designed cell containing the pure fluid was heated and, as a result, a low contrast line appeared on the wetting film that corresponded to a sharp change in the thickness of the film. A large mechanical response was observed in response to the cell heating and we present quantitative results about the receding contact lines. It is found that the vapor recoil force is responsible for the receding contact line. Local density fluctuations were observed by illuminating a cylindrical cell filled with the pure fluid near its liquid- gas critical point and recorded using a microscope and a video recorder. Microscopic fluctuations were analyzed both in sulfur hexafluoride and in a binary mixture of methanol cyclohexane. Using image processing techniques, we were able to estimate the properties of the fluid from the recorded images showing fluctuations of the transmitted and scattered light. We found that the histogram of an image can be fitted to a Gaussian relationship and by determining its width we were able to estimate the position of the critical point. The characteristic length of the fluctuations corresponding to the maximum of the radial average of the power spectrum was also estimated. The power law growth for the early stage of the phase separation was determined for two different temperature quenches in pure fluid and these results are in agreement with other experimental results and computational simulations.
|
18 |
Computational Techniques for Coupled Flow-Transport ProblemsKronbichler, Martin January 2011 (has links)
This thesis presents numerical techniques for solving problems of incompressible flow coupled to scalar transport equations using finite element discretizations in space. The two applications considered in this thesis are multi-phase flow, modeled by level set or phase field methods, and planetary mantle convection based on the Boussinesq approximation. A systematic numerical study of approximation errors in evaluating the surface tension in finite element models for two-phase flow is presented. Forces constructed from a gradient in the same discrete function space as used for the pressure are shown to give the best performance. Moreover, two approaches for introducing contact line dynamics into level set methods are proposed. Firstly, a multiscale approach extracts a slip velocity from a micro simulation based on the phase field method and imposes it as a boundary condition in the macro model. This multiscale method is shown to provide an efficient model for the simulation of contact-line driven flow. The second approach combines a level set method based on a smoothed color function with a the phase field method in different parts of the domain. Away from contact lines, the additional information in phase field models is not necessary and it is disabled from the equations by a switch function. An in-depth convergence study is performed in order to quantify the benefits from this combination. Also, the resulting hybrid method is shown to satisfy an a priori energy estimate. For the simulation of mantle convection, an implementation framework based on modern finite element and solver packages is presented. The framework is capable of running on today's large computing clusters with thousands of processors. All parts in the solution chain, from mesh adaptation over assembly to the solution of linear systems, are done in a fully distributed way. These tools are used for a parallel solver that combines higher order time and space discretizations. For treating the convection-dominated temperature equation, an advanced stabilization technique based on an artificial viscosity is used. For more efficient evaluation of finite element operators in iterative methods, a matrix-free implementation built on cell-based quadrature is proposed. We obtain remarkable speedups over sparse matrix-vector products for many finite elements which are of practical interest. Our approach is particularly efficient for systems of differential equations.
|
19 |
Experimental study of the evaporation of sessile droplets of perfectly-wetting pure liquidsTsoumpas, Ioannis 02 December 2014 (has links)
The study presented in this dissertation concerns the evaporation, in normal ambient conditions, of sessile droplets (pinned and freely receding) of various HFE liquids (instead of the widely used water), which are considered so far as environmentally friendly and are often used as heat-transfer fluids in thermal management applications. They are pure perfectly-wetting and volatile liquids with low thermal conductivity and high vapor density. These properties affect in their own way many aspects concerning droplet evaporation such as the evaporation-induced contact angles, evaporation rate of a droplet, contact line pinning and Marangoni flow, all of which are treated in the present dissertation.<p>In general, the thesis starts with a general introduction including but not limited to sessile droplets (Chapter 1). In Chapter 2 we provide a general overview of capillarity-related concepts. Then, in Chapter 3 we present the interferometric setup, along with the liquids and the substrate that is used in the experiments, and also explain the reasons why this particular method is chosen. In Chapter 4 we address, among others, the issue of evaporation-induced contact angles under complete wetting conditions. The behavior of the global evaporation rate is also examined here, whereas in Chapter 5 we discuss the influence of thermocapillary stresses on the shape of strongly evaporating droplets. Finally, before concluding in Chapter 7, we address in Chapter 6 the still open question of the influence of non-equilibrium effects, such as evaporation, on the contact-line pinning at a sharp edge, a phenomenon usually described in the framework of equilibrium thermodynamics. The experimental results obtained are also compared with the predictions of existing theoretical models giving rise to interesting conclusions and promising perspectives for future research.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
20 |
Elastocapillary Behavior and Wettability Control in Nanoporous MicrostructuresAnnavarapu, Rama Kishore January 2018 (has links)
No description available.
|
Page generated in 0.0477 seconds