Spelling suggestions: "subject:"triple contact life"" "subject:"périple contact life""
1 |
Droplet Impingement on Superhydrophobic SurfacesClavijo Angeles, Cristian Esteban 01 April 2016 (has links)
This dissertation explores the physics of droplet impingement on superhydrophobic surfaces. The research is divided in three categories. First, the effect of a slip boundary condition on droplet spreading/retracting is considered. A model is developed based on energy conservation to evaluate spreading rates on surfaces exhibiting isotropic and anisotropic slip. The results show that larger slip causes the droplet to spread out farther owing to reduced friction at the interface for both slip scenarios. Furthermore, effects of slip become magnified for large Weber numbers due to the larger solid-liquid contact area during the process. On surfaces with anisotropic slip, droplets adopt an elliptical shape following the azimuthal contour of the slip on the surface. It is common for liquid to penetrate into the cavities at the superhydrophobic interface following droplet impact. Once penetrated, the flow is said to be in the Wenzel state and many superhydrophobic advantages, such as self-cleaning and drag-reduction, become negated. Transition from the Wenzel to the Cassie state (liquid resides above the texture) is referred to as dewetting and is the focus of the second piece of this dissertation. Micro-pillar pitch, height and temperature play a role on dewetting dynamics. The results show that dewetting rates increase with increasing pillar height and increasing surface temperature. A scaling model is constructed to obtain an explanation for the experimental observations and suggests that increasing pillar height increasing the driving dewetting force, while increasing surface temperature decreases dissipation. The last piece of work of this dissertation entails droplet impingement on superheated surfaces (100°C - 400°C). We find that the Leidenfrost point (LFP) occurs at a lower temperature on a hydrophobic surface than a hydrophilic one, where the LFP refers to the lowest temperature at which secondary atomization ceases to occur. This behavior is attributed to the manner in which vapor bubbles grow at the solid-liquid interface. Also in this work, high-speed photographs reveal that secondary atomization can be significantly suppressed on a superhydrophobic surface owing to the micro-pillar forest which allows vapor to escape hence minimizing bubble formation within the droplet. However, a more in-depth study into different superhydrophobic texture patterns later reveals that atomization intensity can significantly increase for small pitch values given the obstruction to vapor flow presented by the increased frequency of the pillars.
|
2 |
Fluctuations, Phase Separation and Wetting Films near Liquid-Gas Critical PointOprisan, Ana 22 May 2006 (has links)
Gravity on Earth limits the study of the properties of pure fluids near critical point because they become stratified under their own weight. Near the critical point, all thermodynamic properties either diverge or converge and the heating and cooling cause instabilities of the convective flow as a consequence of the expansibility divergence. In order to study boiling, fluctuation and phase separation processes near the critical point of pure fluids without the influence of the Earth's gravity, a number of experiments were performed in the weightlessness of Mir space station. The experimental setup called ALICE II instrument was designed to suppress sedimentation and buoyancy-driven flow. Another set of experiments were carried out on Earth using a carefully density matched system of deuterated methanolcycloxexane to observe critical fluctuations directly. The set of experiments performed on board of Mir space station studied boiling and wetting film dynamics during evaporation near the critical point of two pure fluids (sulfur hexafluoride and carbon dioxide) using a defocused grid method. The specially designed cell containing the pure fluid was heated and, as a result, a low contrast line appeared on the wetting film that corresponded to a sharp change in the thickness of the film. A large mechanical response was observed in response to the cell heating and we present quantitative results about the receding contact lines. It is found that the vapor recoil force is responsible for the receding contact line. Local density fluctuations were observed by illuminating a cylindrical cell filled with the pure fluid near its liquid- gas critical point and recorded using a microscope and a video recorder. Microscopic fluctuations were analyzed both in sulfur hexafluoride and in a binary mixture of methanol cyclohexane. Using image processing techniques, we were able to estimate the properties of the fluid from the recorded images showing fluctuations of the transmitted and scattered light. We found that the histogram of an image can be fitted to a Gaussian relationship and by determining its width we were able to estimate the position of the critical point. The characteristic length of the fluctuations corresponding to the maximum of the radial average of the power spectrum was also estimated. The power law growth for the early stage of the phase separation was determined for two different temperature quenches in pure fluid and these results are in agreement with other experimental results and computational simulations.
|
3 |
Modélisation et simulation à l' échelle du pore de la récupération assistée des hydrocarbures par injection de polyméres / Pore-scale numerical simulation of Oil Recovery by polymer injectionPinilla Velandia, Johana Lizeth 13 December 2012 (has links)
Ce travail est motivé par la nécessité de mieux comprendre la technique de récupération du pétrole par injection de polymères à l'échelle du pore. On considère deux fluides immiscibles dans un réseau de microcanaux. A cette échelle, le diamètre des canaux est de l'ordre de quelques dizaines de micromètres tandis que la vitesse est de l'ordre du centimètre par seconde. Cela nous permet d'utiliser les équations de Stokes incompressible pour décrire l'écoulement des fluides. Le modèle Olroyd-B est utilisé pour décrire l'écoulement du fluide viscoélastique. Afin d'effectuer des simulations numériques dans une géométrie complexe comme un réseau de microcanaux, une méthode de pénalisation est utilisée. Pour suivre l'interface entre les deux fluides, la méthode Level-Set est employée. Le modèle pour la dynamique de la ligne triple est basé sur les la loi de Cox. Enfin, on présente des résultats de simulations numériques avec des paramètres physiques réalistes. / This work is motivated by the need for better understanding the polymer Enhanced Oil Recovery (EOR) technique at the pore-scale. We consider two phase immiscible fluids in a microchannel network. In microfluidics, the diameter of the channels is of the order of a few tens of micrometers and the flow velocity is of the order of one centimeter per second. The incompressible Stokes equations are used to describe the fluid flow. The Oldroyd-B rheological model is used to capture the viscoelastic behavior. In order to perform numerical simulations in a complex geometry like a microchannel network, a penalization method is implemented. To follow the interface between the two fluids, the Level-Set method is employed. The dynamic contact line model used in this work is based on the Cox law. Finally, we perform simulations with realistic parameters.
|
Page generated in 0.0669 seconds