• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 20
  • 13
  • 11
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 166
  • 166
  • 43
  • 41
  • 38
  • 38
  • 35
  • 34
  • 34
  • 32
  • 30
  • 29
  • 27
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

PHYSICS BASED REDUCED ORDER MODELS FOR FRICTIONAL CONTACTS

DESHMUKH, DINAR V. 13 July 2005 (has links)
No description available.
72

MECHANICS AND DYNAMICS OF UNDERWATER ELASTIC CONTACTS

Kumar, Nityanshu 28 July 2022 (has links)
No description available.
73

Measurement of Surface and Interfacial Energies between Solid Materials Using an Elastica Loop

Qi, Jia 27 October 2000 (has links)
The measurement of the work of adhesion is of significant technical interest in a variety of applications, ranging from a basic understanding of material behavior to the practical aspects associated with making strong, durable adhesive bonds. The objective of this thesis is to investigate a novel technique using an elastica loop to measure the work of adhesion between solid materials. Considering the range and resolution of the measured parameters, a specially designed apparatus with a precise displacement control system, an analytical balance, an optical system, and a computer control and data acquisition interface is constructed. An elastica loop made of poly(dimethylsiloxane) [PDMS] is attached directly to a stepper motor in the apparatus. To perform the measurement, the loop is brought into contact with various substrates as controlled by the computer interface, and information including the contact patterns, contact lengths, and contact forces is obtained. Experimental results indicate that due to anticlastic bending, the contact first occurs at the edges of the loop, and then spreads across the width as the displacement continues to increase. The patterns observed show that the loop is eventually flattened in the contact region and the effect of anticlastic bending of the loop is reduced. Compared to the contact diameters observed in the classical JKR tests, the contact length obtained using this elastica loop technique is, in general, larger, which provides potential for applications of this technique in measuring interfacial energies between solid materials with high moduli. The contact procedure is also simulated to investigate the anticlastic bending effect using finite element analysis with ABAQUS. The numerical simulation is conducted using a special geometrically nonlinear, elastic, contact mechanics algorithm with appropriate displacement increments. Comparisons of the numerical simulation results, experimental data, and the analytical solution are made. / Master of Science
74

Contact mechanics and impact dynamics of non-conforming elastic and viscoelastic semi-infinite or thin bonded layered solids

Votsios, Vasilis January 2003 (has links)
The thesis is concerned with the contact mechanics behaviour of non-conforming solids. The geometry of the solids considered gives rise to various contact configurations, from concentrated contacts with circular and elliptical configuration to those of finite line nature, as well as those of less concentrated form such as circular flat punches. The radii of curvature of mating bodies in contact or impact give rise to these various nonconforming contact configurations and affect their contact characteristics, from those considered as semi-infinite solids in accord with the classical Hertzian theory to those that deviate from it. Furthermore, layered solids have been considered, some with higher elastic modulus than that of the substrate material (such as hard protective coatings) and some with low elastic moduli, often employed as tribological coatings (such as solid lubricants). Other bonded layered solids behave in viscoelastic manner, with creep relaxation behaviour under load, and are often used to dampen structural vibration upon impact. Analytic models have been developed for all these solids to predict their contact and impact behaviour and obtain pressure distribution, footprint shape and deformation under both elastostatic and transient dynamic conditions. Only few solutions for thin bonded layered elastic solids have been reported for elastostatic analysis. The analytical model developed in this thesis is in accord with those reported in the literature and is extended to the case of impact of balls, and employed for a number of practical applications. The elastostatic impact of a roller against a semi-infinite elastic half-space is also treated by analytic means, which has not been reported in literature. Two and three-dimensional finite element models have been developed and compared with all the derived analytic methods, and good agreement found in all cases. The finite element approach used has been made into a generic tool for all the contact configurations, elastic and viscoelastic. The physics of the contact mechanical problems is fully explained by analytic, numerical and supporting experimentation and agreement found between all these approaches to a high level of conformance. This level of agreement, the development of various analytical impact models for layered solids and finite line configuration, and the development of a multi-layered viscoelastic transducer with agreed numerical predictions account for the main contributions to knowledge. There are a significant number of findings within the thesis, but the major findings relate to the protective nature of hard coatings and high modulus bonded layered solids, and the verified viscoelastic behaviour of low elastic modulus compressible thin bonded layers. Most importantly, the thesis has created a rational framework for contact/impact of solids of low contact contiguity.
75

Analysis of complete contacts subject to fatigue

Flicek, Robert C. January 2015 (has links)
Engineering assemblies are very frequently subject to fretting fatigue, which is a damage process that results when very small slip displacements arise at nominally stationary frictional interfaces. Fretting accelerates the initiation and early propagation of fatigue cracks, thereby causing significant reductions in the fatigue performance of many critical engineering components. A majority of the previous research on fretting fatigue has focused on incomplete (i.e. smooth-edged) contacts, while complete (i.e. sharp-edged) contacts have received less attention. The aim of this thesis is to contribute to the theoretical understanding of complete contacts, especially when they are subject to fatigue conditions. This problem is addressed in two separate ways. First, because fretting failures almost invariably initiate from the edge of contact, a detailed understanding of the conditions in this region should enable more accurate assessments of fatigue performance to be made. Thus, an asymptotic analysis is presented, which provides an accurate description of the contact edge under many conditions. This is done by using the elasticity solution for a semi-infinite notch to represent the state of stress near the contact edge in an asymptotic sense. Attention is then placed on the fact that cyclically loaded frictional contacts tend toward a steady-state response in which less frictional slip (and energy dissipation) occurs than in the first few load cycles. To investigate this effect, a numerical sub-structuring procedure is described, which significantly reduces the number of degrees of freedom in finite element models of frictional contact. This reduced model is then used to calculate the shakedown limit, i.e. the amplitude of cyclic load above which frictional slip is guaranteed to persist in the steady state. The sensitivity of the steady-state solution to the initial residual displacement state is then investigated, and it is shown that initial conditions can have a large influence on the steady-state behaviour of complete contacts.
76

Výpočtové modelování dynamických projevů v kontaktu kola a kolejnice s obecnou geometrií kontaktních povrchů / Numerical Simulations of Dynamic Loads in Wheel-Rail Contact with Shape Irregularities

Jandora, Radek January 2012 (has links)
During life of railway vehicles, shape irregularities develop on wheels and rails because of wear. The shape irregularities then affect forces in wheel-rail contact and cause further damage of contact surfaces, vibrations and noise and increase risk of derailment. A numerical simulation of railway vehicle motion with more details on contact surfaces geometry was created to investigate dynamic contact loads in wheel-rail contact. A variety of methods can be used to evaluate forces in rolling contact, the method chosen for this study was algorithm CONTACT based on boundary element method. Four studies are presented in this papers: contact loads from a wheel with a flat and with a wavy tread pattern, loads on wavy rail and load in a curve. The first three studies investigated effects of existing wear patterns, the last one looked for cause of common wear pattern developing on rails. Results of the studies with worn components used showed that the worst kind of shape irregularities is a flat present on wheel. This type of shape cause loss of contact and following impacts. The study of ride in curve showed that cause of high wear in curves, especially those with small radii, is caused by vibration of wheelset. This vibration is then caused by different length of inner and outer rail and wheels travelling along a different path.
77

Simulations of contact mechanics and wear of linearly reciprocating block-on-flat sliding test

Rudnytskyj, André January 2018 (has links)
The use of computational methods in tribology can be a valuable approach to deal with engineering problems, ultimately saving time and resources. In this work, amodel problem and methodology is developed to deal with a common situation found in experiments in tribology, namely a linearly reciprocating block-on-flat drysliding contact. The modelling and simulation of such case would allow a better understanding of the contact pressure distribution, wear and geometry evolutionof the block as it wears out during a test. Initially, the introduction and motivation for this work is presented, followed by a presentation of relevant scientific topics related to this work. Wear modelling of published studies are reviewed next, along with studies available in the literature and the goals for this thesis.The fourth section refers to the methodology used and the built-up of the model problem. In this work the Finite Element Method and Archard’s wear model through COMSOL Multiphysics® and MATLAB® are used to study the proposed contact problem. The construction of the model problem is detailed and the procedure for wear, geometry update and long term predictions, is presented inspired by the literature reviewed. Finally, the results are presented and discussed; wear increment and new geometries evolution are presented in the figures, followed by pressure profile evolution at selected times. The final geometry is also compared for different time steps. At last, conclusions and recommendations for future work are stated.
78

Numerical modeling of the surface and the bulk deformation in a small scale contact. Application to the nanoindentation interpretation and to the micro-manipulation.

Berke, Péter P. Z. 19 December 2008 (has links)
L’adaptation des surfaces pour des fonctions prédéterminées par le choix des matériaux métalliques ou des couches minces ayant des propriétés mécaniques avancées peut potentiellement permettre de réaliser des nouvelles applications à petites échelles. Concevoir de telles applications utilisant des nouveaux matériaux nécessite en premier lieu la connaissance des propriétés mécaniques des matériaux ciblés à l’échelle microscopique et nanoscopique. Une méthode souvent appliquée pour caractériser les matériaux à petites échelles est la nanoindentation, qui peut être vue comme une mesure de dureté à l’échelle nanoscopique. Ce travail présente une contribution relative à l'interprétation des résultats de la nanoindentation, qui fait intervenir un grand nombre de phénomènes physiques couplés à l'aide de simulations numériques. A cette fin une approche interdisciplinaire, adaptée aux phénomènes apparaissant à petites échelles, et située à l’intersection entre la physique, la mécanique et la science des matériaux a été utilisée. Des modèles numériques de la nanoindentation ont été conçus à l'échelle atomique (modèle discret) et à l'échelle des milieux continus (méthode des éléments finis), pour étudier le comportement du nickel pur. Ce matériau a été choisi pour ses propriétés mécaniques avancées, sa résistance à l'usure et sa bio-compatibilité, qui peuvent permettre des applications futures intéressantes à l'échelle nanoscopique, particulièrement dans le domaine biomédical. Des méthodes avancées de mécanique du solide ont été utilisées pour prendre en compte les grandes déformations locales du matériau (par la formulation corotationelle), et pour décrire les conditions de contact qui évoluent au cours de l'analyse dans le modèle à l'échelle des milieux continus (traitement des conditions de contact unilatérales et tangentielles par une forme de Lagrangien augmenté). L’application des modèles numériques a permis de contribuer à l’identification des phénomènes qui gouvernent la nanoindentation du nickel pur. Le comportement viscoplastique du nickel pur pendant nanoindentation a été identifié dans une étude expérimentale-numérique couplée, et l'effet cumulatif de la rugosité et du frottement sur la dispersion des résultats de la nanoindentation a été montré par une étude numérique (dont les résultats sont en accord avec des tendances expérimentales). Par ailleurs, l’utilisation de l’outil numérique pour une autre application à petites échelles, la manipulation des objets par contact, a contribué à la compréhension de la variation de l’adhésion électrostatique pendant micromanipulation. La déformation plastique des aspérités de surface sur le bras de manipulateur (en nickel pur) a été identifiée comme une source potentielle d’augmentation importante de l'adhésion pendant la micromanipulation, qui peut potentiellement causer des problèmes de relâche et de précision de positionnement, observés expérimentalement. Les résultats présentés dans cette thèse montrent que des simulations numériques basées sur la physique du problème traité peuvent expliquer des tendances expérimentales et contribuer à la compréhension et l'interprétation d'essais couramment utilisé pour la caractérisation aux petites échelles. Le travail réalisé dans cette thèse s’inscrit dans un projet de recherche appelé "mini-micro-nano" (mµn), financé par la Communauté Française de Belgique dans le cadre de "l'Action de Recherche Concertée", convention 04/09-310.
79

Design, testing and analysis of journal bearings for construction equipment

Strand, Henrik January 2005 (has links)
Grease-lubricated journal bearings present a common challenge for construction equipment manufacturers in the world. The common design methodology is based on empirical data and has worked very well historically because the market and governments have accepted that bearings in construction equipment need frequent lubrication and exchange of worn parts. Legal and market requirements will soon demand lower environmental impact and increased machine efficiency. These requirements call for better methods of designing grease lubricated journal bearings. The goal of the outlined work was to develop better design methods for grease lubricated journal-bearing design used in heavy-duty construction equipment machines, in order to prolong life and lubrication intervals. The research approach of the project can roughly be divided into three phases: 1. Development of test apparatus and test methods for journal bearing studies. 2. Bench tests of grease lubricated journal bearing design. 3. Verification between bench tests and computer simulations. In the thesis the current state of the art in bearing design for construction equipment is discussed and summarized in the form of design guidelines. The suggested design steps are just a mean to get to the starting point of design. The simple guidelines do however serve a purpose when collected since most published bearing design guidelines are aimed at the bushing material or at continuously rotating bearings. The influence of housing, environment and load cases can not be ignored when designing a bearing. Long term field-testing and experience can not be replaced until better design criteria have been established. Paper A deals with the design of the bearing test apparatus that was built and evaluated. Comparisons between theoretical contact and contact elements in Finite Element program have been made and discussed in paper B. In paper C a replica technique for measuring wear of large field specimens was evaluated. A case study of bearing housing design was performed in paper D utilizing Finite Element program and then validated in paper E in the bearing test apparatus. The influence of grease groove design on bushing life was tested and evaluated in paper F. Wear simulation of a plain bushing has been performed with a Finite Element program and presented in paper G. / QC 20100930
80

Development of Model for Solid Oxide Fuel Cell Compressive Seals

Green, Christopher K. 14 November 2007 (has links)
Fuel cells represent a promising energy alternative to the traditional combustion of fossil fuels. In particular, solid oxide fuel cells (SOFCs) have been of interest due to their high energy densities and potential for stationary power applications. One of the key obstacles precluding the maturation and commercialization of planar SOFCs has been the absence of a robust sealant. A leakage computational model has been developed and refined in conjunction with leakage experiments and material characterization tests at Oak Ridge National Laboratory to predict leakage in a single interface metal-metal compressive seal assembly as well as multi-interface mica compressive seal assemblies. The composite model is applied as a predictive tool for assessing how certain parameters (i.e., temperature, applied compressive stress, surface finish, and elastic thermo physical properties) affect seal leakage rates.

Page generated in 0.042 seconds