Spelling suggestions: "subject:"contact state"" "subject:"contact itate""
1 |
Theoretical and Experimental Studies of Material Flow during the Friction Stir Welding ProcessCheng, Yu-Hsiang 16 February 2012 (has links)
In order to simulate the histories of temperature distributions and plastic flow of the dwell phase during a friction stir welding process, the Newton-Raphson method is used to solve the simultaneous equations of energy and momentum in the cylindrical-coordinate system. Comparing the simulation with the results of experiment, results show that the contact condition between the tool and the workpiece is at pure sliding without plastic flow at the beginning of the dwell phase until the temperature rises to about 300¢XC at the depth of 1.5 mm. In this period, the heat generation comes from the sliding friction between two surfaces. After the plastic flow occurs, the heat generation rises rapidly, and then decreases to a saturated value so that the temperature rise also achieves a constant value. Thermal expansion of the workpiece will increase the plunge force, so that the heat generation and the temperature raise increase. At the steady state condition, with increasing sticking proportion, the heat generation and the temperature quickly achieve a saturated value.
For the steady-state condition, results show that the speed of plastic flow and shear strain rate increase with increasing rotational speed. The control of the contact state variable can effectively describe the heat generation and the distribution of plastic flow in different contact conditions. Comparing the simulation with the results of experiment, the contact condition can be identified.
|
2 |
Kinematic Analysis of a Threaded Fastener AssemblyWiedmann, Stephen Louis 12 April 2000 (has links)
The demands for an increase in productivity and reduced assembly costs require engineers to automate solutions that replace manual labor. This work concentrated on a common assembly primitive, threaded fastener insertion, in an effort to determine the nature of contact between a bolt and nut during thread mating. The assembly problem was initially simplified as a two-dimensional analysis to gain an understanding about how contacts between the bolt and nut change during counter-clockwise motion. Tessellated solid models were used during three-dimensional collision analysis in such a way that the approximate location of the contact point was enumerated. The advent of a second contact point presented a more constrained contact state since we are interested in maintaining both contacts; thus the bolt rotated about a vector defined by the initial two contact points until a third contact location was found. By analyzing the depth of intersection of the bolt into the nut as well as the vertical movement of the origin of the bolt reference frame, we determined that there are three types of contacts states present: unstable two-point, quasi-stable two-point, stable three point. Though the unstable case remains to be deciphered, the parametric equations derived in this work can be used without modification to create a full spectrum of maps at any point in the history of a threaded assembly problem. We investigated 81 potential orientations, each of which has its own set of contact points. From this exhaustive examination, we are capable of detailing a contact state history and, from this, have the potential to develop a constraint network. / Master of Science
|
Page generated in 0.0593 seconds