• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A simulation-optimization model to study the control of seawater intrusion in coastal aquifers

Abd-Elhamid, Hany Farhat January 2010 (has links)
Groundwater contamination is a very serious problem as it leads to the depletion of water resources. Seawater intrusion is a special category of groundwater contamination that threatens the health and possibly lives of many people living in coastal areas. The focus of this work is to develop a numerical model to study seawater intrusion and its effects on groundwater quality and develop a control method to effectively control seawater intrusion. Two major approaches are used in this study: the first approach is the development of a finite element model to simulate seawater intrusion; the second is the development of a simulation-optimization model to study the control of seawater intrusion in coastal aquifers using different management scenarios. The simulation-optimization model is based on the integration of a genetic algorithm optimization technique with the transient density-dependent finite element model developed in this research. The finite element model considers the coupled flow of air and water and solute transport in saturated and unsaturated soils. The governing differential equations include two mass balance equations of water and air phases and the energy balance equation for heat transfer, together with a balance equation for miscible solute transport. The nonlinear governing differential equations are solved using the finite element method in the space domain and a finite difference scheme in the time domain. A two dimensional finite element model is developed to solve the governing equations and provide values of solute concentration, pore water pressure, pore air pressure and temperature at different points within the region at different times. The mathematical formulation and numerical implementation of the model are presented. The numerical model is validated by application to standard examples from literature followed by application to a number of case studies involving seawater intrusion problems. The results show good agreement with previous results reported in the literature. The model is then used to predict seawater intrusion for a number of real world case studies. The developed model is capable of predicting, with a good accuracy, the intrusion of seawater in coastal aquifers. In the second approach, a simulation-optimization model is developed to study the control of seawater intrusion using three management scenarios: abstraction of brackish water, recharge of fresh water and combination of abstraction and recharge. The objectives of these management scenarios include minimizing the total costs for construction and operation, minimizing salt concentrations in the aquifer and determining the optimal depths, locations and abstraction/recharge rates for the wells. Also, a new methodology is presented to control seawater intrusion in coastal aquifers. In the proposed methodology ADR (abstraction, desalination and recharge), seawater intrusion is controlled by abstracting brackish water, desalinating it using a small scale reverse osmosis plant and recharging to the aquifer. The simulation-optimization model is applied to a number of case studies. The efficiencies of three different scenarios are examined and compared. Results show that all the three scenarios could be effective in controlling seawater intrusion. However, ADR methodology can result in the lowest cost and salt concentration in aquifers and maximum movement of the transition zone towards the sea. The results also show that for the case studies considered in this work, the amount of abstracted and treated water is about three times the amount required for recharge; therefore the remaining treated water can be used directly for different proposes. The application of ADR methodology is shown to be more efficient and more practical, since it is a cost-effective method to control seawater intrusion in coastal aquifers. This technology can be used for sustainable development of water resources in coastal areas where it provides a new source of treated water. The developed method is regard as an effective tool to control seawater intrusion in coastal aquifers and can be applied in areas where there is a risk of seawater intrusion. Finally, the developed FE model is applied to study the effects of likely climate change and sea level rise on seawater intrusion in coastal aquifers. The results show that the developed model is capable of predicting the movement of the transition zone considering the effects of sea level rise and over-abstraction. The results also indicate that the change of water level in the sea side has a significant effect on the position of the transition zone especially if the effect of sea level rise is combined with the effect of increasing abstraction from the aquifer.
2

HYDRUS 2D simulation of atrazine movement in tropical and temperate soil region under corn cultivation / Simulação da dinâmica da atrazina pelo modelo HYDRUS 2D sob cultivo de milho em regiões de solo tropical e temperado

Oliveira, Luciano Alves de 25 March 2019 (has links)
The crop productivity increase is often associated with an increase in the use of agricultural products, including herbicides. When these products are applied in an untidy way, leaching may occur and cause environmental contamination either at the soil or at the groundwater. Regarding herbicides, atrazine is widely used in Brazil and around the world. It is also considered as the main organic pollutant, and a potential contaminant of the water table. According to that, it is necessary to build a detailed knowledge about the dynamics of these molecules through the soil with the objective to better control the contamination risks. Thus, the main goal of this research was to simulate the atrazine\'s movement through both tropical and temperate soils under corn cultivation using HYDRUS package models, and to obtain equation parameters to transform electromagnetic induction (EMI) signal data in atrazine\'s movement parameters. Thus, the research was conducted in two different places: 1 - \"Luiz de Queiroz\" College of Agriculture (ESALQ/USP) at the Biosystems Engineering Department and at the Ecotoxicology Laboratory (CENA/USP) both in Piracicaba, SP (Brazil), and 2 - at the Meat Animal Research Center (MARC/ARS) from the United States Department of Agriculture (USDA) in Clay Center, NE (US). In Brazil, a corn crop using three treatments of atrazine was conducted in a greenhouse to obtain the herbicide concentration data from the soil solution. Then, soil samples were collected to run breakthrough curves (BTC) to obtain atrazine\'s movement parameters through STANMOD model. After that, atrazine\'s movement simulations were taken through the HYDRUS 2D model. In the end, statistical indexes were used to compare observed and modeled data aiming the evaluation of HYDRUS 2D model for the movement of atrazine. In US, EMI data were collected in a corn field before atrazine application. Then, soil samples from this field were collected for BTC\'s to obtain atrazine\'s movement parameters. After obtaining such parameters, models were generated correlating EMI signal data with atrazine\'s movement parameters. Subsequently, statistical comparison indexes were used to compare the actual data obtained with the data obtained by the new model generated. Finally, simulations of the movement of atrazine were made with the purpose of evaluating the contamination of the subsoil. In addition, maps with interpolated data were generated, facilitating the visualization of sites most susceptible to contamination. In Brazil, the atrazine\'s movement parameters were R = 1.604, β = 0.82 e ω = 2.5 h-1. Then, HYDRUS 2D simulations were precise (r = 0.9815) and accuracy (d = 0.9906) when the corn plant is not in the system. However, with the presence of the corn, HYDRUS 2D still predicted atrazine with precision (r = 0.8609) but the accuracy was low (d = 0.4449). In US, the atrazine\'s movement parameters were R = 7.45, β = 0.47, and ω = 5.56 h-1. Further, models using EMI signal data to predict atrazine\'s movement parameters were generated. The statistical indexes to these models were R2 = 0.9012, r = 0.9311, and d = 0.9589. Overall, HYDRUS 2D is a model to predict atrazine\'s movement through the soil. However, more researches need to be carried out considering the plant as part of the system and the parameters which account water and solutes absorption need to be improved. The EMI technique to obtain atrazine\'s movement parameters was also well succeeded. Thus, it should be broadly used to monitor atrazine and other contaminants. / O aumento de produtividade dos cultivos, na maioria das vezes, está associado a um aumento na utilização de insumos agrícolas, dentre eles, os herbicidas. Quando esses produtos são aplicados de uma maneira desordenada ao solo, processos de lixiviação podem ocorrer e, dessa forma, provocar algum tipo de contaminação ambiental, alcançando, assim, águas subterrâneas. Nesse sentido, em termos de aplicação de herbicidas, a atrazina é um exemplo dessa classe, que é intensamente utilizada no Brasil e no mundo e é frequentemente considerada como sendo um dos principais poluentes orgânicos, revelando-se, também, como um dos potenciais contaminantes do lençol freático. Visando maior controle de riscos de um possível impacto ambiental aliado à necessidade de aumento de produtividade, faz-se necessário o conhecimento com maior detalhamento sobre a dinâmica desses elementos no perfil do solo. Dessa forma, buscou-se como objetivo principal dessa pesquisa, simular a dinâmica da atrazina em um perfil de solo utilizando-se, para tal, o modelo HYDRUS 2D, sob condições de cultivo de milho, em regiões de solos tropicais e temperados e obter parâmetros de uma equação que transforme dados de indução eletromagnética (EMI) em parâmetros do movimento da atrazina. Deste modo, a pesquisa foi conduzida em dois locais distintos: Local 1 - Escola Superior de Agricultura \"Luiz de Queiroz\" (ESALQ/USP), junto ao Departamento de Engenharia de Biossistemas e Laboratório de Ecotoxicologia (CENA/USP) ambos em Piracicaba, SP (Brasil) e Local 2 - U.S. Meat Animal Research Center (MARC/ARS/USDA), em Clay Center, Nebraska (EUA). No Brasil, um cultivo de milho usando-se três tratamentos de atrazina foi conduzido em estufa experimental a fim de se obter dados de concentração do herbicida na solução do solo. Em seguida, amostras do mesmo solo foram coletadas para realização de curvas de eluição (BTC) para se obter os parâmetros de movimento da atrazina através do software STANMOD. Após a obtenção de tais parâmetros, simulações de movimento da atrazina no solo foram realizadas através do modelo HYDRUS 2D. Por fim, índices estatísticos de comparação foram utilizados para avaliar este software. Nos Estados Unidos, dados de EMI foram coletados num campo de cultivo de milho antes da aplicação de atrazina. Em seguida, amostras de solo deste campo foram coletadas para realização de BTC\'s para se obter os parâmetros do movimento da atrazina. Após a obtenção de tais parâmetros, foram gerados modelos correlacionando dados de EMI com os parâmetros do movimento do herbicida. Posteriormente, índices estatísticos de comparação foram utilizados com o objetivo de se comparar os dados reais obtidos com os dados obtidos pelo novo modelo gerado. Por fim, simulações do movimento da atrazina foram feitas com o intuito de avaliar a contaminação do subsolo. Além disso, mapas com dados interpolados foram gerados, facilitando a visualização dos locais mais suscetíveis à contaminação. No experimento realizado no Brasil, os parâmetros do movimento da atrazina encontrados foram: R = 1,604, β = 0,82 e ω = 2,5 h-1. Com tais parâmetros, o modelo HYDRUS 2D simulou o movimento da atrazina com precisão (r = 0,9815) e acurácia (d = 0,9906), quando a planta de milho não está inclusa no sistema. Quando a planta é considerada, o modelo prevê o movimento da atrazina com precisão (r = 0,8609), porém sem precisão (d = 0,4449). No experimentos realizado nos EUA, os parâmetros do movimento da atrazina encontrados foram: R = 7,45, β = 0,47 e ω = 5,56 h-1. Modelos para obtenção dos parâmetros de movimento da atrazina utilizando-se EMI como dado de entrada foram gerados e seus índices estatísticos de comparação foram: R2 = 0,9012, r = 0,9311 e d = 0,9589. Deste modo, o modelo HYDRUS 2D é uma ferramenta para simular o movimento da atrazina no solo. No entanto, mais pesquisas devem ser feitas no que se refere à presença da planta no sistema solo-planta-atmosfera, pois os parâmetros que controlam a absorção de água e solutos podem estar obsoletos. A técnica de obtenção de EMI também foi bem sucedida na previsão dos parâmetros do movimento da atrazina e, portanto, deve ser utilizada para monitoramento, não só da própria atrazina, mas também de outros contaminantes.
3

Simulation strategies for improved contamination modeling of liquid dynamics on automotive surfaces

Sugathapala, Thisal Mandula, Bakker, Twan January 2022 (has links)
A significant level of research is currently being carried out in the development of driver support systems as they are expected to play a key role in minimizing road vehicle accidents and creating a safe driving environment under harsh weather conditions. However, the performance of some components used by existing driver support systems like LIDAR and visual cameras are affected by extreme weather conditions such as heavy rain fall and snow. Therefore, it is paramount to identify key locations in an automotive vehicle where such systems are least affect by external weather conditions, thereby, improving their overall performance. The field of research that deals with such questions from a simulation perspective is called contamination modeling. At the moment, one of the biggest knowledge gaps in this field is how to consider the effect of different materials on the movement of liquids such as water on different automotive surfaces like glass, plastic, rubber and painted metal. The work presented in this research study has been carried out to investigate and establish the most suitable simulation strategies to match numerical predictions with experimental data for flow of water over different automotive surfaces. Following a comprehensive parametric study of simulation parameters, it was found that the most suitable model that can be tweaked to achieve different flow properties with different surfaces is a dynamic contact angle model. The Blended Kistler model available in STAR-CCM+ required specific values for static, advancing and receding contact angles to optimize a surface for a given material. Therefore, droplet experiments of two droplet sizes were initially carried out for all tested materials at different inclinations and necessary flow parameters were recorded. All experiments were carried out using an approach known as light induced fluorescence imaging where the captured images provided a very convenient method for post processing in computational software. Results from droplet experiments showed that water moved quickest on plastic and slowest on glass. Static contact angle measurements were carried out first on horizontal surfaces. Afterwards, the surface was inclined at 15, 30, 45, 60, and 75 degrees to measure changes in contact angle and velocities. The surfaces for glass and painted metal were directly taken from the door of a Volvo S60 while a separate surface was used for plastic and rubber. These results were then used to create simulation setups for rivulets in STAR-CCM+ with the multiphase modeling approach known as volume of fluid. Rivulet simulations were carried out for all four materials at five different inclinations and the results were compared and validated with experimental data. The results show good correlation between numerical predictions for rivulet movement and experimental data emphasising on the possibility of fine-tuning the surfaces of a simulation setup to represent different material properties.

Page generated in 0.1748 seconds