• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 902
  • 583
  • 184
  • 96
  • 46
  • 42
  • 18
  • 18
  • 12
  • 11
  • 8
  • 8
  • 7
  • 7
  • 6
  • Tagged with
  • 2328
  • 775
  • 323
  • 322
  • 312
  • 235
  • 177
  • 148
  • 144
  • 140
  • 140
  • 135
  • 133
  • 123
  • 119
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
551

Degradation of tertiary butyl alcohol by a Pseudomonas sp. isolated from groundwater

Chadduck, James B. January 1987 (has links)
A <i>Pseudomonas</i> sp. capable of degrading tertiary butyl alcohol (TBA) as a sole carbon source, was isolated from a groundwater aquifer (50 ft. deep) at a petroleum refinery. The most probable number (MPN) of TBA degrading microorganisms was 4.9 x 10³ organisms/g (dry wt) of subsurface soil. Pristine subsurface soils, which did not have a history of petroleum contamination, had MPNs of < 2 TBA degrading organisms/g (dry wt) indicating a natural enrichment process at the refinery site. The Q<sub>O2</sub> of <i>Pseudomonas</i> sp. was 4.2 ml O₂/mg dry wt/h when TBA was the substrate. The optimum pH for growth was 7.0. The organism grew faster in continuous culture when TBA was the sole carbon source with a doubling time 33.6 h. The doubling time in batch culture was 112.3 h. When yeast extract was added to a mineral salts + TBA medium to concentrations greater than 1 mg/ml, TBA degradation was inhibited. When the yeast extract concentration was 0.1 mg/ml, a diauxy effect was seen in the growth rate. This suggested that TBA degradation by <i>Pseudomonas</i> sp. was subject to a regulatory mechanism. / M.S.
552

Low Impurity Content GaN Prepared via OMVPE for Use in Power Electronic Devices: Connection Between Growth Rate, Ammonia Flow, and Impurity Incorporation

Ciarkowski, Timothy A. 10 October 2019 (has links)
GaN has the potential to revolutionize the high power electronics industry, enabling high voltage applications and better power conversion efficiency due to its intrinsic material properties and newly available high purity bulk substrates. However, unintentional impurity incorporation needs to be reduced. This reduction can be accomplished by reducing the source of contamination and exploration of extreme growth conditions which reduce the incorporation of these contaminants. Newly available bulk substrates with low threading dislocations allow for better study of material properties, as opposed to material whose properties are dominated by structural and chemical defects. In addition, very thick films can be grown without cracking due to exact lattice and thermal expansion coefficient match. Through chemical and electrical measurements, this work aims to find growth conditions which reduces contamination without a severe impact on growth rate, which is an important factor from an industry standpoint. The proposed thicknesses of these devices are on the order of one hundred microns and requires tight control of the intentional dopants. / Doctor of Philosophy / GaN is a compound semiconductor which has the potential to revolutionize the high power electronics industry, enabling new applications and energy savings due to its inherent material properties. However, material quality and purity requires improvement. This improvement can be accomplished by reducing contamination and growing under extreme conditions. Newly available bulk substrates with low defects allow for better study of material properties. In addition, very thick films can be grown without cracking on these substrates due to exact lattice and thermal expansion coefficient match. Through chemical and electrical measurements, this work aims to find optimal growth conditions for high purity GaN without a severe impact on growth rate, which is an important factor from an industry standpoint. The proposed thicknesses of these devices are on the order of one hundred microns and requires tight control of impurities.
553

Decision Making Tools for Optimizing Environmental Sampling Plans for Listeria in Poultry Processing Plants

Al Wahaimed, Abdullah Saud 08 July 2022 (has links)
Meat and poultry slaughtering and processing practices have been associated with the microbial contamination with Listeria spp. Ready-to-eat poultry products have been considered as a primary agent associated with Listeria monocytogenes illness outbreaks. Developing environmental monitoring programs (EMPs) that are based on product and/or process risk level analysis is a useful approach to reduce contamination in poultry processing plants and enhance food safety. Sampling criteria that is based on product risk levels and process control in ready-to-eat poultry processing facilities was developed to allow users to design and conduct appropriate sampling plans to target Listeria spp. After developing the criteria, an internet-based environmental monitoring program ("EZSafety") was developed to allow poultry producers to enhance their sample collection and analysis of test results over time and conduct appropriate sampling plans for Listeria spp. and other microbiological indicators. The frontend of the program website was built using React Native (an open-source JavaScript library for building user interfaces). The backend of the program website was built using Node.js which executes JavaScript code outside a web browser. MongoDB was used as a document-oriented database for the website. The program was evaluated by 20 food safety professionals to assess its ability to develop appropriate sampling plans to target Listeria spp. The majority of these participants believed that EZSafety has several tools that are effective for targeting Listeria spp. and other indicators and enhancing environmental monitoring. Additionally, most participants agreed that EZSafety is organized and user-friendly. EMPs can play a significant role in improving the detection rate and the prevention of Listeria spp. and other indicators in poultry processing plants. / Master of Science in Life Sciences / Meat and poultry slaughtering and processing practices have been associated with the microbial contamination with a bacterium known as Listeria. Cooked poultry products during the manufacturing process have been considered as a primary agent associated with Listeria monocytogenes (disease causing type of bacteria) sickness outbreaks. Developing environmental monitoring plans to detect and prevent this bacterium in poultry processing establishments is a useful approach to reduce contamination and enhance food safety. Several guidelines and baselines were developed to allow users to design and conduct appropriate environmental monitoring plans to target this bacterium. After developing these guidelines and baselines, an internet-based environmental monitoring program ("EZSafety") was developed to allow poultry processors to enhance their sample collection and analysis of test results over time. The program was developed using several kinds of computer platforms (JavaScript, React Native, and MongoDB) . These open-source platforms were used to design, develop, and store the program over the internet. In order to validate its usefulness, the program was evaluated by 20 users who are majored in food safety and familiar with poultry processing plants hygiene to assess its ability to suggest appropriate monitoring plans. Most of the participants believed that EZSafety has several tools that are effective for targeting Listeria and other kinds of bacteria and enhancing environmental monitoring plans. Additionally, most participants agreed that EZSafety is organized and user-friendly. Such automated monitoring programs can play a significant role in enhancing the detection rate and the prevention of Listeria and other organisms in poultry processing facilities.
554

Groundwater Interactive: Interdisciplinary Web-Based Software Incorporating New Learning Methodologies and Technologies

Mendez, Eduardo 06 December 2002 (has links)
Groundwater related courses are offered through several colleges at Virginia Tech. These classes enroll a diverse group of students with varied academic backgrounds and educational levels. Though these classes emphasize different aspects of groundwater resources, they lack a unified approach in instructional materials and learning methodologies for knowledge they do share. The goals of this research are to lessen the impact of variable student backgrounds and to better integrate the courses to improve teaching and learning, through the development of a multi-tiered, interdisciplinary website, Groundwater Interactive (GWI). GWI, as an educational technology, employs a variety of interactive multimedia. The primary educational components of the website include interactive and graphical models and quizzes, and a student-authored primer. An implementation strategy based on experiential and cooperative learning models is developed for application of the GWI tool in the classroom. An assessment methodology to evaluate the effectiveness of these new learning methods and techniques was also developed, but was not implemented as part of this work. / Master of Science
555

Variations in the biodegradation potential of subsurface environments for organic contaminants

Hickman, Gary T. January 1988 (has links)
The purpose of this research was to evaluate the rates, patterns, and pathways involved in the biodegradation of organic contaminants in subsurface environments. Subsurface material was obtained from ten sites in six geographical locations representing diverse environmental conditions. The overall goal was to gain a general understanding of biodegradative mechanisms rather than making site-specific measurements. The biodegradation rates of methanol, phenol, and <i>t</i>-butanol (TBA) were evaluated in static soil/water microcosms. Biodegradation assays were conducted under ambient anoxic conditions, and with the addition of potential electron acceptors (nitrate, nitrite, sulfate) or metabolic inhibitors (molybdate, BESA) to promote different pathways of anaerobic microbial metabolism (nitrate respiration/denitrification, sulfate reduction, or methanogenesis). In unamended systems, biodegradation rates varied considerably between sites. Methanol and phenol were degraded fairly readily. Rates generally ranged from 0.5 to 1.0 mgL⁻¹d⁻¹ for 20°C incubation. Disappearance of methanol and phenol followed zero- to first-order kinetics and was usually immediate, requiring no acclimation period. TBA was relatively recalcitrant in subsurface soils, disappearing at a rate of 0.1-0.3 mgL⁻¹d⁻¹ (20°C). No biodegradation was evident, relative to sterile controls, in certain soils. The pattern of TBA degradation was typically biphasic: a long lag period of slow, linear removal was followed by an abrupt increase in removal rate (albeit still slow). Biodegradation rates were positively correlated with bacterial density for 12 soil samples from 3 sites within a localized area at Blacksburg, Virginia. However, this relationship did not exist between soils from diverse locations. The prevailing electron acceptor conditions govern the catabolic pathways utilized in the anaerobic respiration of organic contaminants. The effects of the added electron acceptors and inhibitors on biodegradation rates varied between sites. Two general types of systems are indicated by relative biodegradation rates, characteristic responses to electron acceptor/inhibitor amendments, and general environmental conditions. "Fast" soils are characterized by a higher flux of water and nutrients, higher biodegradation rates, and rate enhancement upon adding nitrate or sulfate. In "slow" soils, organic contaminants are degraded at lower rates, rates are decreased by adding nitrate, sulfate, or BESA (which inhibits methanogenesis), and rates are increased by adding molybdate (which inhibits sulfate reduction). Nearly all soils tested were capable of sulfate-reducing and methanogenic metabolism, but those populations were more active, and competition between the two groups was less severe, in "fast" soils. In contrast, "fast" soils appeared to harbor an active population of nitrate respiring/denitrifying bacteria, whereas in "slow" soils that metabolic group was inactive, absent, or susceptible to nitrite toxicity. / Ph. D.
556

Biodegradation of organic contaminants in subsurface systems: kinetic and metabolic considerations

Morris, Mark S. January 1988 (has links)
Groundwater contaminated by organic chemicals from industrial spills, leaking underground gasoline storage tanks and landfills has caused concern about the future of a major source of drinking water. Compounds from industrial sources such as alcohols and phenols are frequently found as groundwater contaminants. These compounds are highly soluble in water and do not adsorb well to aquifer material. They also have the potential to migrate in the subsurface system achieving significant levels in drinking water supplies. In addition, they can serve as carriers for carcinogenic compounds such as benzene, toluene and xylene which are relatively insoluble in water, but are quite soluble in alcohol. A potential alternative to expensive groundwater reclamation projects is the use of the natural soil bacteria to degrade organic contaminants. Very little is known, however, about subsurface soil bacteria to man-made organic chemicals or the degradation rates of these compounds. Such information would be useful in planning cleanup or protection strategies for groundwater systems. This study was designed to measure the kinetic response of tertiary butyl alcohol (TBA), determine the biological degradation rates of methanol, ethanol, propanol, l-butanol, TBA, pentanol, phenol and 2,4-dichlorophenol; describe site specific conditions which enhance or inhibit degradation and compare biodegradation rates with thermodynamic predictions. Laboratory microcosms utilizing soil from two previously uncontaminated sites of widely varying conditions were constructed to simulate the subsurface environment. Nitrate was added to some microcosms to stimulate denitrification and metabolic inhibitors were added to others to define conditions at each site which favor biodegradation. Each of the test compounds except TBA was readily degraded in the Blacksburg soil. Inhibition of sulfate reduction by the addition of molybdate stimulated degradation of all compounds including TBA, whereas, inhibition of methanogenesis with BESA slowed the degradation rates. The addition of nitrate did not affect the biodegradation in Blacksburg soil. In the Newport News soil, all of the test compounds were biodegraded at substantially higher rates than was observed in the Blacksburg soil. The presence of the metabolic inhibitors did not affect degradation, however, the addition of nitrate increased the degradation rates of the alcohols but not the phenols. The degradation rates in each of the soils did not correlate with the bacterial population size or free energies of the reactions. / Ph. D.
557

Towards an Understanding of the Interaction of Hair with the Depositional Environment

Wilson, Andrew S., Dixon, Ronald A., Edwards, Howell G.M., Farwell, Dennis W., Janaway, Robert C., Pollard, A. Mark, Tobin, Desmond J. January 2001 (has links)
No / There is developing interest in the analytical use of human hair from archaeological contexts in key research areas such as DNA, trace elemental and isotopic analyses. Other human tissues, especially bone, that have been used for trace element, isotopic and DNA analyses have had extensive study concerning their diagenesis, but this has not been done for hair. Consideration must be given to the complex interaction of hair with its buried environment, thereby laying a firm basis for the use of hair in future research. Since human hair is known to survive under a diverse range of environmental conditions, a pilot study has investigated the basic processes of hair degradation, using samples from different climatic zones and burial types. Variation in the degree of preservation of archaeological hair was characterized by light microscopy, electron microscopy, and FT-Raman spectroscopy, relating morphological change of the surface and internal structure of hair to its biochemical integrity. The results demonstrate a breakdown of cortical cell boundaries and disruption of the cuticular layering, coupled with infiltration of material from the burial matrix that suggests a progressive loss of cohesion that is in part due to microbiological activity. Medullated hair is shown to be more susceptible to physical breakdown by providing two routes for microbial and environmental attack. At the molecular level the proteinaceous component undergoes alteration, and the S-S cystine linkages, responsible for the strength and resilience of hair in living individuals, are lost.
558

The Inhibition of Fungal Contaminants in Cultures of Mycobacterium Tuberculosis

Wright, Noble M. 01 1900 (has links)
The problem of conatmination in culture media for Mycobacterium tuberculosis has not been solved completely, and for this reason the work herein presented was carried out. In this work experiments were made testing the effect of actidione in inhibiting certain ones of the higher fungi.
559

Metal-organic frameworks as potential agents for extraction and delivery of pesticides and agrochemicals

Mahmoud, L.A.M., dos Reis, R.A., Chen, X., Ting, V.P., Nayak, Sanjit 30 January 2023 (has links)
Yes / Pesticide contamination is a global issue, affecting nearly 44% of the global farming population, and disproportionately affecting farmers and agricultural workers in developing countries. Despite this, global pesticide usage is on the rise, with the growing demand of global food production with increasing population. Different types of porous materials, such as carbon and zeolites, have been explored for the remediation of pesticides from the environment. However, there are some limitations with these materials, especially due to lack of functional groups and relatively modest surface areas. In this regard, metal-organic frameworks (MOFs) provide us with a better alternative to conventionally used porous materials due to their versatile and highly porous structure. Recently, a number of MOFs have been studied for the extraction of pesticides from the environment as well as for targeted and controlled release of agrochemicals. Different types of pesticides and conditions have been investigated, and MOFs have proved their potential in agricultural applications. In this review, the latest studies on delivery and extraction of pesticides using MOFs are systematically reviewed, along with some recent studies on greener ways of pest control through the slow release of chemical compounds from MOF composites. Finally, we present our insights into the key issues concerning the development and translational applications of using MOFs for targeted delivery and pesticide control.
560

Portrait épidémiologique de la Ciguatera dans le Pacifique-sud

Chateau-Degat, Marie-Ludivine 11 April 2018 (has links)
La ciguatera est une intoxication consécutive à l’ingestion de poissons d’ambiance corallienne contaminés par une micro-algue. Malgré une connaissance séculaire, l’apparente recrudescence de cette maladie, sa répartition géographique, sa variabilité symptomatique sont autant de points qui restent à éclaircir. Ce projet avait pour objectif de dresser le portrait épidémiologique actuel de cet ichtyosarcotoxisme en Polynésie Française afin d’en améliorer la prise en charge. Nos résultats démontrent que l’incidence de la ciguatera dans cette région est relativement stable. Parmi les facteurs écologiques associés aux variations d’incidence, la modélisation de la floraison de l’algue apparaît par nos analyses comme une avenue prometteuse d’une mise en place d’outils de prévention pour réduire l’incidence. Du point de vue clinique, nos résultats confirment la prédominance des symptômes neurologiques qui évoque une polyneuropathie sensitive se résorbant progressivement dont la gravité paraît reliée à la quantité de toxines ingérées. / Ciguatera poisoning is an ichtyosarcotoxism found throughout many tropical areas of the world. Even though this intoxication has been known since the 18th century, many epidemiological aspects remain unclear. The main goal of this thesis was to establish the epidemiological portrait of this seafood poisoning in order to improve its management. The first part of this project describes this ichtyosarcotoxism according to its environmental and temporal aspects. The second part addresses clinical aspects of the disease. A global increase of ciguatera incidence has been suggested in the literature. However, results from our retrospective study indicate a relatively constant annual incidence in French Polynesia over the ten years of the study. An analysis of cases grouped by archipelago also revealed differences in incidence rates with the most remote archipelagos having the highest incidence. These high rates observed highlight the need to develop prevention tools in order to reduce the incidence. Results from our model of changes in the incidence of ciguatera disease following algae blooms might be useful for assisting ciguatera risk management initiatives. Indeed, results from the study highlight a clear temporal relation between ciguatera disease and its etiologic agent: Gambierdiscus spp. From a clinical point of view, our results confirm the neurological feature of this intoxication as previously proposed and suggest that several symptoms observed in 183 patients at the acute phase of the disease are still persistent 2 months after the onset. In order to characterize these symptoms, we compared the neurological evaluation of 47 patients with ciguatera disease to 125 ciguatera-free controls. Results showed that ciguatera disease predominantly alters the peripheral sensory system represented mainly by sensory disturbances (light-touch and thermal) and poorer sway performances compared to controls. Over three testing periods, we observed an improvement of sway performances but, light touch threshold remained altered for more than 50% of patient 60 days after of the onset. In summary, results obtained in this thesis confirm the evolution ciguatera disease to chronic stage in the study population and suggest that ciguatera symptoms in acute phase are similar to a sensory polyneuropathy with a progressive recovery.

Page generated in 0.1644 seconds