• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 47
  • 47
  • 20
  • 19
  • 16
  • 16
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Security Analysis of Some Physical Content Distribution Systems

Jiayuan, Sui January 2008 (has links)
Content distribution systems are essentially content protection systems that protect premium multimedia content from being illegally distributed. Physical content distribution systems form a subset of content distribution systems with which the content is distributed via physical media such as CDs, Blu-ray discs, etc. This thesis studies physical content distribution systems. Specifically, we concentrate our study on the design and analysis of three key components of the system: broadcast encryption for stateless receivers, mutual authentication with key agreement, and traitor tracing. The context in which we study these components is the Advanced Access Content System (AACS). We identify weaknesses present in AACS, and we also propose improvements to make the original system more secure, flexible and efficient.
12

A Content Delivery Model for Online Video

Yuan, Liang 09 October 2009 (has links)
Online video accounts for a large and growing portion of all Internet traffic. In order to cut bandwidth costs, it is necessary to use the available bandwidth of users to offload video downloads. Assuming that users can only keep and distribute one video at any given time, it is necessary to determine the global user cache distribution with the goal of achieving maximum peer traffic. The system model contains three different parties: viewers, idlers and servers. Viewers are those peers who are currently viewing a video. Idlers are those peers who are currently not viewing a video but are available to upload to others. Finally, servers can upload any video to any user and has infinite capacity. Every video maintains a first-in-first-out viewer queue which contains all the viewers for that video. Each viewer downloads from the peer that arrived before it, with the earliest arriving peer downloading from the server. Thus, the server must upload to one peer whenever the viewer queue is not empty. The aim of the idlers is to act as a server for a particular video, thereby eliminating all server traffic for that video. By using the popularity of videos, the number of idlers and some assumptions on the viewer arrival process, the optimal global video distribution in the user caches can be determined.
13

Provision Quality-of-Service Controlled Content Distribution in Vehicular Ad Hoc Networks

Luan, Hao 23 August 2012 (has links)
By equipping vehicles with the on-board wireless facility, the newly emerged vehicular networking targets to provision the broadband serves to vehicles. As such, a variety of novel and exciting applications can be provided to vehicular users to enhance their road safety and travel comfort, and finally raise a complete change to their on-road life. As the content distribution and media/video streaming, such as Youtube, Netflix, nowadays have become the most popular Internet applications, to enable the efficient content distribution and audio/video streaming services is thus of the paramount importance to the success of the vehicular networking. This, however, is fraught with fundamental challenges due to the distinguished natures of vehicular networking. On one hand, the vehicular communication is challenged by the spotty and volatile wireless connections caused by the high mobility of vehicles. This makes the download performance of connections very unstable and dramatically change over time, which directly threats to the on-top media applications. On the other hand, a vehicular network typically involves an extremely large-scale node population (e.g., hundreds or thousandths of vehicles in a region) with intense spatial and temporal variations across the network geometry at different times. This dictates any designs to be scalable and fully distributed which should not only be resilient to the network dynamics, but also provide the guaranteed quality-of-service (QoS) to users. The purpose of this dissertation is to address the challenges of the vehicular networking imposed by its intrinsic dynamic and large-scale natures, and build the efficient, scalable and, more importantly, practical systems to enable the cost-effective and QoS guaranteed content distribution and media streaming services to vehicular users. Note that to effective- ly deliver the content from the remote Internet to in-motion vehicles, it typically involves three parts as: 1.) an infrastructure grid of gateways which behave as the data depots or injection points of Internet contents and services to vehicles, 2.) protocol at gateways which schedules the bandwidth resource at gateways and coordinates the parallel transmissions to different vehicles, and 3.) the end-system control mechanism at receivers which adapts the receiver’s content download/playback strategy based on the available network throughput to provide users with the desired service experience. With above three parts in mind, the entire research work in this dissertation casts a systematic view to address each part in one topic with: 1.) design of large-scale cost-effective content distribution infrastructure, 2.) MAC (media access control) performance evaluation and channel time scheduling, and 3.) receiver adaptation and adaptive playout in dynamic download environment. In specific, in the first topic, we propose a practical solution to form a large-scale and cost-effective content distribution infrastructure in the city. We argue that a large-scale infrastructure with the dedicated resources, including storage, computing and communication capacity, is necessary for the vehicular network to become an alternative of 3G/4G cellular network as the dominating approach of ubiquitous content distribution and data services to vehicles. On addressing this issue, we propose a fully distributed scheme to form a large-scale infrastructure by the contributions of individual entities in the city, such as grocery stores, movie theaters, etc. That is to say, the installation and maintenance costs are shared by many individuals. In this topic, we explain the design rationale on how to motivate individuals to contribute, and specify the detailed design of the system, which is embodied with distributed protocols and performance evaluation. The second topic investigates on the MAC throughput performance of the vehicle-to- infrastructure (V2I) communications when vehicles drive through RSUs, namely drive-thru Internet. Note that with a large-scale population of fast-motion nodes contending the chan- nel for transmissions, the MAC performance determines the achievable nodal throughput and is crucial to the on-top applications. In this topic, using a simple yet accurate Marko- vian model, we first show the impacts of mobility (characterized by node velocity and moving directions) on the nodal and system throughput performance, respectively. Based on this analysis, we then propose three enhancement schemes to timely adjust the MAC parameters in tune with the vehicle mobility to achieve the maximal the system throughput. The last topic investigates on the end-system design to deliver the user desired media streaming services in the vehicular environment. In specific, the vehicular communications are notoriously known for the intermittent connectivity and dramatically varying throughput. Video streaming on top of vehicular networks therefore inevitably suffers from the severe network dynamics, resulting in the frequent jerkiness or even freezing video playback. To address this issue, an analytical model is first developed to unveil the impacts of network dynamics on the resultant video performance to users in terms of video start-up delay and smoothness of playback. Based on the analysis, the adaptive playout buffer mechanism is developed to adapt the video playback strategy at receivers towards the user-defined video quality. The proposals developed in the three topics are validated with the extensive and high fidelity simulations. We believe that our analysis developed in the dissertation can provide insightful lights on understanding the fundamental performance of the vehicular content distribution networks from the aspects of session-level download performance in urban vehicular networks (topic 1), MAC throughput performance (topic 2), and user perceived media quality (topic 3). The protocols developed in the three topics, respectively, offer practical and efficient solutions to build and optimize the vehicular content distribution networks.
14

Throughput and Fairness Considerations in Overlay Networks for Content Distribution

Karbhari, Pradnya 26 August 2005 (has links)
The Internet has been designed as a best-effort network, which does not provide any additional services to applications using the network. Overlay networks, which form an application layer network on top of the underlying Internet, have emerged as popular means to provide specific services and greater control to applications. Overlay networks offer a wide range of services, including content distribution, multicast and multimedia streaming. In my thesis, I focus on overlay networks for content distribution, used by applications such as bulk data transfer, file sharing and web retrieval. I first investigate the construction of such overlay networks by studying the bootstrapping functionality in an example network (the Gnutella peer-to-peer system). This study comprises the analysis and performance measurements of Gnutella servents and measurement of the GWebCache system that helps new peers find existing peers on the Gnutella network. Next, I look at fairness issues due to the retrieval of data at a client in the form of multipoint-to-point sessions, formed due to the use of content distribution networks. A multipoint-to-point session comprises multiple connections from multiple servers to a single client over multiple paths, initiated to retrieve a single application-level object. I investigate fairness of rate allocation from a session point of view, and propose fairness definitions and algorithms to achieve these definitions. Finally, I consider the problem of designing an overlay network for content distribution, which is fair to competing overlay networks, while maximizing the total end-to-end throughput of the data it carries. As a first step, I investigate this design problem for a single path in an Overlay-TCP network. I propose two schemes that dynamically provision the number of TCP connections on each hop of an Overlay-TCP path to maximize the end-to-end throughput using few extraneous connections. Next, I design an Overlay-TCP network, with the secondary goal of intra-overlay network fairness. I propose four schemes for deciding the number of TCP connections to be used on each overlay hop. I show that one can vary the proportion of sharing between competing overlay networks by varying the maximum number of connections allowed on overlay hops in each competing network.
15

Provision Quality-of-Service Controlled Content Distribution in Vehicular Ad Hoc Networks

Luan, Hao 23 August 2012 (has links)
By equipping vehicles with the on-board wireless facility, the newly emerged vehicular networking targets to provision the broadband serves to vehicles. As such, a variety of novel and exciting applications can be provided to vehicular users to enhance their road safety and travel comfort, and finally raise a complete change to their on-road life. As the content distribution and media/video streaming, such as Youtube, Netflix, nowadays have become the most popular Internet applications, to enable the efficient content distribution and audio/video streaming services is thus of the paramount importance to the success of the vehicular networking. This, however, is fraught with fundamental challenges due to the distinguished natures of vehicular networking. On one hand, the vehicular communication is challenged by the spotty and volatile wireless connections caused by the high mobility of vehicles. This makes the download performance of connections very unstable and dramatically change over time, which directly threats to the on-top media applications. On the other hand, a vehicular network typically involves an extremely large-scale node population (e.g., hundreds or thousandths of vehicles in a region) with intense spatial and temporal variations across the network geometry at different times. This dictates any designs to be scalable and fully distributed which should not only be resilient to the network dynamics, but also provide the guaranteed quality-of-service (QoS) to users. The purpose of this dissertation is to address the challenges of the vehicular networking imposed by its intrinsic dynamic and large-scale natures, and build the efficient, scalable and, more importantly, practical systems to enable the cost-effective and QoS guaranteed content distribution and media streaming services to vehicular users. Note that to effective- ly deliver the content from the remote Internet to in-motion vehicles, it typically involves three parts as: 1.) an infrastructure grid of gateways which behave as the data depots or injection points of Internet contents and services to vehicles, 2.) protocol at gateways which schedules the bandwidth resource at gateways and coordinates the parallel transmissions to different vehicles, and 3.) the end-system control mechanism at receivers which adapts the receiver’s content download/playback strategy based on the available network throughput to provide users with the desired service experience. With above three parts in mind, the entire research work in this dissertation casts a systematic view to address each part in one topic with: 1.) design of large-scale cost-effective content distribution infrastructure, 2.) MAC (media access control) performance evaluation and channel time scheduling, and 3.) receiver adaptation and adaptive playout in dynamic download environment. In specific, in the first topic, we propose a practical solution to form a large-scale and cost-effective content distribution infrastructure in the city. We argue that a large-scale infrastructure with the dedicated resources, including storage, computing and communication capacity, is necessary for the vehicular network to become an alternative of 3G/4G cellular network as the dominating approach of ubiquitous content distribution and data services to vehicles. On addressing this issue, we propose a fully distributed scheme to form a large-scale infrastructure by the contributions of individual entities in the city, such as grocery stores, movie theaters, etc. That is to say, the installation and maintenance costs are shared by many individuals. In this topic, we explain the design rationale on how to motivate individuals to contribute, and specify the detailed design of the system, which is embodied with distributed protocols and performance evaluation. The second topic investigates on the MAC throughput performance of the vehicle-to- infrastructure (V2I) communications when vehicles drive through RSUs, namely drive-thru Internet. Note that with a large-scale population of fast-motion nodes contending the chan- nel for transmissions, the MAC performance determines the achievable nodal throughput and is crucial to the on-top applications. In this topic, using a simple yet accurate Marko- vian model, we first show the impacts of mobility (characterized by node velocity and moving directions) on the nodal and system throughput performance, respectively. Based on this analysis, we then propose three enhancement schemes to timely adjust the MAC parameters in tune with the vehicle mobility to achieve the maximal the system throughput. The last topic investigates on the end-system design to deliver the user desired media streaming services in the vehicular environment. In specific, the vehicular communications are notoriously known for the intermittent connectivity and dramatically varying throughput. Video streaming on top of vehicular networks therefore inevitably suffers from the severe network dynamics, resulting in the frequent jerkiness or even freezing video playback. To address this issue, an analytical model is first developed to unveil the impacts of network dynamics on the resultant video performance to users in terms of video start-up delay and smoothness of playback. Based on the analysis, the adaptive playout buffer mechanism is developed to adapt the video playback strategy at receivers towards the user-defined video quality. The proposals developed in the three topics are validated with the extensive and high fidelity simulations. We believe that our analysis developed in the dissertation can provide insightful lights on understanding the fundamental performance of the vehicular content distribution networks from the aspects of session-level download performance in urban vehicular networks (topic 1), MAC throughput performance (topic 2), and user perceived media quality (topic 3). The protocols developed in the three topics, respectively, offer practical and efficient solutions to build and optimize the vehicular content distribution networks.
16

Replica placement algorithms for efficient internet content delivery.

Xu, Shihong January 2009 (has links)
This thesis covers three main issues in content delivery with a focus on placement algorithms of replica servers and replica contents. In a content delivery system, the location of replicas is very important as perceived by a quotation: Closer is better. However, considering the costs incurred by replication, it is a challenge to deploy replicas in a cost-effective manner. The objective of our work is to optimally select the location of replicas which includes sites for replica server deployment, servers for replica contents hosting, and en-route caches for object caching. Our solutions for corresponding applications are presented in three parts of the work, which makes significant contributions for designing scalable, reliable, and efficient systems for Internet content delivery. In the first part, we define the Fault-Tolerant Facility Allocation (FTFA) problem for the placement of replica servers, which relaxes the well known Fault-Tolerant Facility Location (FTFL) problem by allowing an integer (instead of binary) number of facilities per site. We show that the problem is NP-hard even for the metric version, where connection costs satisfy the triangle inequality. We propose two efficient algorithms for the metric FTFA problem with approximation factors 1.81 and 1.61 respectively, where the second algorithm is also shown to be (1.11,1.78)- and (1,2)-approximation through the proposed inverse dual fitting technique. The first bi-factor approximation result is further used to achieve a 1.52-approximation algorithm and the second one a 4-approximation algorithm for the metric Fault-Tolerant k-Facility Allocation problem, where an upper bound of facility number (i. e. k) applies. In the second part, we formulate the problem of QoS-aware content replication for parallel access in terms of combined download speed maximization, where each client has a given degree of parallel connections determined by its QoS requirement. The problem is further converted into the metric FTFL problem and we propose an approximation algorithm which is implemented in a distributed and asynchronous manner of communication. We show theoretically that the cost of our solution is no more than 2F* + RC*, where F* and C* are two components of any optimal solution while R is the maximum number of parallel connections. Numerical experiments show that the cost of our solutions is comparable (within 4% error) to the optimal solutions. In the third part, we establish mathematical formulation for the en-route web caching problem in a multi-server network that takes into account all requests (to any server) passing through the intermediate nodes on a request/response path. The problem is to cache the requested object optimally on the path so that the total system gain is maximized. We consider the unconstrained case and two QoS-constrained cases respectively, using efficient dynamic programming based methods. Simulation experiments show that our methods either yield a steady performance improvement (in the unconstrained case) or provide required QoS guarantees. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1461921 / Thesis (Ph.D.) - University of Adelaide, School of Computer Science, 2009
17

Leveraging relations among objects to improve the performance of information-centric networks / Utilizando relações entre objetos para melhorar o desempenho de redes orientadas a conteúdo

Antunes, Rodolfo Stoffel January 2016 (has links)
Redes Orientadas a Conteúdo (Information-Centric Networks, ICN) são um novo paradigma de comunicação criado para aproximar as infraestruturas de rede às necessidades de sistemas de distribuição de conteúdo. ICN utiliza mecanismos de roteamento e cache projetados para atender requisições por objetos de dados unicamente identificados e desassociados de um localizador fixo. Até o momento, pesquisas sobre ICN focaram principalmente na avaliação de aspectos arquiteturais, tais como o desempenho de diferentes esquemas de roteamento e cache. Entretanto, o método aplicado para distribuir dados utilizando o conceito de objetos também pode impactar a comunicação em uma ICN. Esta tese explora um modelo que permite a distribuição de um conteúdo através de múltiplos objetos de dados. Emprega-se o conceito de relações, definidas como elos entre dois objetos indicando que os dados de um complementam de alguma forma os dados do outro. Tal modelo baseado em relações permite que clientes identifiquem e recuperem os objetos necessários para a reconstrução do conteúdo. Ele é agnóstico ao formato de dados das aplicações, suporta diferentes estruturas de relações e é retrocompatível com especificações atuais de arquiteturas ICN. Também discute-se os principais aspectos de projeto relativos à implementação do modelo na arquitetura NDN. Para avaliar o impacto de relações no desempenho da rede e aplicações, foi realizada uma série de experimentos com dois estudos de caso baseados em cenários relevantes da Internet atual, sendo eles: conteúdo multimídia e páginasWeb. O estudo de caso sobre conteúdo multimídia explora um cenário favorável, no qual relações apresentam uma sobrecarga negligível em contraste ao grande volume de dados dos conteúdos. Os resultados deste estudo de caso mostram que, em comparação com a implementação padrão do NDN, o uso de relações pode reduzir os tempos de download em 34% e o tráfego de rede em 43%. Por sua vez, o estudo de caso sobre páginasWeb explora um cenário no qual relações geram um impacto não negligível na rede e aplicações. A análise deste cenário mostra que, mesmo com a sobrecarga adicional gerada pelas relações, o mecanismo pode reduzir, em média, o tempo de download dos clientes em 28% e o tráfego de rede em 34%. / Information-Centric Networking (ICN) is a communication paradigm created to align the network infrastructures to the needs of content distribution systems. ICN employs routing and caching mechanisms tailored to fulfill requests for uniquely identified data objects not associated to a fixed locator. So far, research about ICN focused primarily on evaluating architectural aspects, such as the performance of di erent routing and caching schemes. However, the method applied to distribute data using the concept of objects can also impact communications in an ICN. In this thesis, we explore a model that enables the distribution of contents as multiple data objects. We employ the concept of relations, defined as links between two objects indicating that the data from one complements in some way the data from the other. Our model based on relations enables clients to identify and retrieve the data pieces required to reconstruct a content. It is application agnostic, supports di erent relation structures, and is backward-compatible with current ICN specifications. We also discuss the main design aspects related to the implementation of the model in the Named Data Networking (NDN) architecture. To evaluate how relations impact network and application performance, we perform a series of experiments with two case studies based on relevant scenarios from the current Internet, namely: multimedia content and Web pages. The multimedia case study explores a favorable scenario in which relations present a negligible overhead in contrast to the high volume of content data. Results from this case study show that, compared to the standard NDN implementation, relations can reduce download times by 34% and network tra c by 43%. In turn, the Web pages case study explores a scenario in which relations generate a non-negligible impact on the network and applications. The analysis of this scenario shows that, even with the additional overhead incurred by relations, the mechanism can reduce on average 28% client download time, and 34%, global network tra c.
18

Leveraging relations among objects to improve the performance of information-centric networks / Utilizando relações entre objetos para melhorar o desempenho de redes orientadas a conteúdo

Antunes, Rodolfo Stoffel January 2016 (has links)
Redes Orientadas a Conteúdo (Information-Centric Networks, ICN) são um novo paradigma de comunicação criado para aproximar as infraestruturas de rede às necessidades de sistemas de distribuição de conteúdo. ICN utiliza mecanismos de roteamento e cache projetados para atender requisições por objetos de dados unicamente identificados e desassociados de um localizador fixo. Até o momento, pesquisas sobre ICN focaram principalmente na avaliação de aspectos arquiteturais, tais como o desempenho de diferentes esquemas de roteamento e cache. Entretanto, o método aplicado para distribuir dados utilizando o conceito de objetos também pode impactar a comunicação em uma ICN. Esta tese explora um modelo que permite a distribuição de um conteúdo através de múltiplos objetos de dados. Emprega-se o conceito de relações, definidas como elos entre dois objetos indicando que os dados de um complementam de alguma forma os dados do outro. Tal modelo baseado em relações permite que clientes identifiquem e recuperem os objetos necessários para a reconstrução do conteúdo. Ele é agnóstico ao formato de dados das aplicações, suporta diferentes estruturas de relações e é retrocompatível com especificações atuais de arquiteturas ICN. Também discute-se os principais aspectos de projeto relativos à implementação do modelo na arquitetura NDN. Para avaliar o impacto de relações no desempenho da rede e aplicações, foi realizada uma série de experimentos com dois estudos de caso baseados em cenários relevantes da Internet atual, sendo eles: conteúdo multimídia e páginasWeb. O estudo de caso sobre conteúdo multimídia explora um cenário favorável, no qual relações apresentam uma sobrecarga negligível em contraste ao grande volume de dados dos conteúdos. Os resultados deste estudo de caso mostram que, em comparação com a implementação padrão do NDN, o uso de relações pode reduzir os tempos de download em 34% e o tráfego de rede em 43%. Por sua vez, o estudo de caso sobre páginasWeb explora um cenário no qual relações geram um impacto não negligível na rede e aplicações. A análise deste cenário mostra que, mesmo com a sobrecarga adicional gerada pelas relações, o mecanismo pode reduzir, em média, o tempo de download dos clientes em 28% e o tráfego de rede em 34%. / Information-Centric Networking (ICN) is a communication paradigm created to align the network infrastructures to the needs of content distribution systems. ICN employs routing and caching mechanisms tailored to fulfill requests for uniquely identified data objects not associated to a fixed locator. So far, research about ICN focused primarily on evaluating architectural aspects, such as the performance of di erent routing and caching schemes. However, the method applied to distribute data using the concept of objects can also impact communications in an ICN. In this thesis, we explore a model that enables the distribution of contents as multiple data objects. We employ the concept of relations, defined as links between two objects indicating that the data from one complements in some way the data from the other. Our model based on relations enables clients to identify and retrieve the data pieces required to reconstruct a content. It is application agnostic, supports di erent relation structures, and is backward-compatible with current ICN specifications. We also discuss the main design aspects related to the implementation of the model in the Named Data Networking (NDN) architecture. To evaluate how relations impact network and application performance, we perform a series of experiments with two case studies based on relevant scenarios from the current Internet, namely: multimedia content and Web pages. The multimedia case study explores a favorable scenario in which relations present a negligible overhead in contrast to the high volume of content data. Results from this case study show that, compared to the standard NDN implementation, relations can reduce download times by 34% and network tra c by 43%. In turn, the Web pages case study explores a scenario in which relations generate a non-negligible impact on the network and applications. The analysis of this scenario shows that, even with the additional overhead incurred by relations, the mechanism can reduce on average 28% client download time, and 34%, global network tra c.
19

Cooperative Content Distribution over Wireless Networks for Energy and Delay Minimization

Atat, Rachad 06 1900 (has links)
Content distribution with mobile-to-mobile cooperation is studied. Data is sent to mobile terminals on a long range link then the terminals exchange the content using an appropriate short range wireless technology. Unicasting and multicasting are investigated, both on the long range and short range links. Energy minimization is formulated as an optimization problem for each scenario, and the optimal solutions are determined in closed form. Moreover, the schemes are applied in public safety vehicular networks, where Long Term Evolution (LTE) network is used for the long range link, while IEEE 802.11 p is considered for inter-vehicle collaboration on the short range links. Finally, relay-based multicasting is applied in high speed trains for energy and delay minimization. Results show that cooperative schemes outperform non-cooperative ones and other previous related work in terms of energy and delay savings. Furthermore, practical implementation aspects of the proposed methods are also discussed.
20

Epidemic Content Distribution in Mobile Networks : A study of epidemic content distribution characteristic with social relationship evaluation

Sun, Lan January 2013 (has links)
With the growing popularity of integrating mobile networks and social networks, people now enjoy a freer and more efficient means of communication. Smarter mobile devices facilitate modern human life. In the information age, various new types of information have begun to appear. How to disseminate content to people in a swift and fair way has long been a question. Choosing the right strategy for content distribution is especially crucial for mobile social networks. In this thesis project we use epidemic models for content distribution in mobile social networks. Stochastic mobility models and an SIR epidemic model are set up in the evaluation. We analyze the impact of various parameters of mobility models and epidemic model on content distribution’s success rate and delivery delay. Also, we exploit the social relationships to facilitate content distribution and show the impact of social relationships on content distribution. Simulations have shown that increasing speed and node number in the mobility models will have positive impact on content distribution success rate as well as decreasing the delay. The infect time limit and infect count limit of the epidemic model are also important for swiftly distributing content while considering energy consumption and fairness for nodes. In the social relationship simulation, nodes’ meeting times during a period of time are calculated and a threshold based on a certain level of meeting times is used for categorizing the friendship relationships between nodes. The results show that it will be easier for a successful distribution to be achieved as the social relationship between nodes gets stronger. Also, the delay shows a decreasing trend until reaching the ideal distribution delay time. / Med den växande populariteten för att integrera mobila nätverk och sociala nätverk, människor njuta nu en friare och effektivare sätt att kommunicera.  Smartare mobila enheter underlättar moderna människans liv. I den information som ålder, har olika nya typer av information börjat visas. Hur sprida innehåll till människor påett snabbt och rättvist sätt har länge varit en fråga. Att välja rätt strategi för distribution av innehåll är särskilt viktigt för mobila sociala nätverk. I den här avhandlingen projekt använder vi epidemiska modeller för distribution av innehåll i mobila sociala nätverk. Stokastiska rörlighet modeller och en SIR-epidemi modell sätts upp i utvärderingen.  Vi analyserar effekterna av olika parametrar rörlighet modeller och epidemisk modell påinnehållsdistribution s framgång och leveransförsening. Dessutom utnyttjar vi de sociala relationerna för att underlätta distribution av innehåll och visa hur sociala relationer pådistribution av innehåll. Simuleringar har visat att ökad hastighet och nodnummer i rörlighet modellerna kommer att ha en positiv inverkan pådistribution av innehåll framgång samt att minska fördröjningen. Den infektera tid och infektera räkna gräns epidemin modellen är ocksåviktiga för att snabbt distribuera innehåll och samtidigt överväga energiförbrukning och rättvisa för noder. I den sociala relationen simulering är noder möte tid under en tidsperiod beräknas och en tröskel baserad påen viss nivåav mötestiden används för att kategorisera vänskap relationer mellan noder. Resultaten visade att det blir lättare för en lyckad spridning uppnås som den sociala relationen mellan noder blir starkare. Dessutom visar fördröjningen en nedåtgående trend tills den når fördröjningen av en ideal fördelning.

Page generated in 0.1147 seconds