Spelling suggestions: "subject:"19kontext–aware"" "subject:"19kontext–zware""
51 |
A Constructive Memory Architecture for Context AwarenessDaruwala, Yohann January 2008 (has links)
Master of Philosophy (Architecture) / Context-aware computing is a mobile computing paradigm in which applications can discover, use, and take advantage of contextual information, such as the location, tasks and preferences of the user, in order to adapt their behaviour in response to changing operating environments and user requirements. A problem that arises is the inability to respond to contextual information that cannot be classified into any known context. Many context-aware applications require all discovered contextual information to exactly match a type of context, otherwise the application will not react responsively. The ability to learn and recall contexts based on the contextual information discovered has not been very well addressed by previous context-aware applications and research. The aim of this thesis is to develop a component middleware technology for mobile computing devices for the discovery and capture of contextual information, using the situated reasoning concept of constructive memory. The research contribution of this thesis lies in developing a modified architecture for context-aware systems, using a constructive memory model as a way to learn and recall contexts from previous experiences and application interactions. Using a constructive memory model, previous experiences can be induced to construct potential contexts, given a small amount of learning and interaction. The learning process is able to map the many variations of contextual information currently discovered by the user with a predicted type of context based on what the application has stored and seen previously. It only requires a small amount of contextual information to predict a context, something common context-aware systems lack, as they require all information before a type of context is assigned. Additionally, some mechanism to reason about the contextual information being discovered from past application interactions will be beneficial to induce contexts for future experiences.
|
52 |
A Constructive Memory Architecture for Context AwarenessDaruwala, Yohann January 2008 (has links)
Master of Philosophy (Architecture) / Context-aware computing is a mobile computing paradigm in which applications can discover, use, and take advantage of contextual information, such as the location, tasks and preferences of the user, in order to adapt their behaviour in response to changing operating environments and user requirements. A problem that arises is the inability to respond to contextual information that cannot be classified into any known context. Many context-aware applications require all discovered contextual information to exactly match a type of context, otherwise the application will not react responsively. The ability to learn and recall contexts based on the contextual information discovered has not been very well addressed by previous context-aware applications and research. The aim of this thesis is to develop a component middleware technology for mobile computing devices for the discovery and capture of contextual information, using the situated reasoning concept of constructive memory. The research contribution of this thesis lies in developing a modified architecture for context-aware systems, using a constructive memory model as a way to learn and recall contexts from previous experiences and application interactions. Using a constructive memory model, previous experiences can be induced to construct potential contexts, given a small amount of learning and interaction. The learning process is able to map the many variations of contextual information currently discovered by the user with a predicted type of context based on what the application has stored and seen previously. It only requires a small amount of contextual information to predict a context, something common context-aware systems lack, as they require all information before a type of context is assigned. Additionally, some mechanism to reason about the contextual information being discovered from past application interactions will be beneficial to induce contexts for future experiences.
|
53 |
A Distributed Architecture for Computing Context in Mobile DevicesDargie, Waltenegus 27 May 2006 (has links) (PDF)
Context-aware computing aims at making mobile devices sensitive to the social and physical settings in which they are used. A necessary requirement to achieve this goal is to enable those devices to establish a shared understanding of the desired settings. Establishing a shared understanding entails the need to manipulate sensed data in order to capture a real world situation wholly, conceptually, and meaningfully. Quite often, however, the data acquired from sensors can be inexact, incomplete, and/or uncertain. Inexact sensing arises mostly due to the inherent limitation of sensors to capture a real world phenomenon precisely. Incompleteness is caused by the absence of a mechanism to capture certain real-world aspects; and uncertainty stems from the lack of knowledge about the reliability of the sensing sources, such as their sensing range, accuracy, and resolution. The thesis identifies a set of criteria for a context-aware system to capture dynamic real-world situations. On the basis of these criteria, a distributed architecture is designed, implemented and tested. The architecture consists of Primitive Context Servers, which abstract the acquisition of primitive contexts from physical sensors; Aggregators, to minimise error caused by inconsistent sensing, and to gather correlated primitive contexts pertaining to a particular entity or situation; a Knowledge Base and an Empirical Ambient Knowledge Component, to model dynamic properties of entities with facts and beliefs; and a Composer, to reason about dynamic real-world situations on the basis of sensed data. Two additional components, namely, the Event Handler and the Rule Organiser, are responsible for dynamically generating context rules by associating decision events ? signifying a user?s activity ? with the context in which those decision events are produced. Context-rules are essential elements with which the behaviour of mobile devices can be controlled and useful services can be provided. Four estimation and recognition schemes, namely, Fuzzy Logic, Hidden Markov Models, Dempster-Schafer Theory of Evidence, and Bayesian Networks, are investigated, and their suitability for the implementation of the components of the architecture of the thesis is studied. Subsequently, fuzzy sets are chosen to model dynamic properties of entities. Dempster-Schafer?s combination theory is chosen for aggregating primitive contexts; and Bayesian Networks are chosen to reason about a higher-level context, which is an abstraction of a real-world situation. A Bayesian Composer is implemented to demonstrate the capability of the architecture in dealing with uncertainty, in revising the belief of the Empirical Ambient Knowledge Component, in dealing with the dynamics of primitive contexts and in dynamically defining contextual states. The Composer could be able to reason about the whereabouts of a person in the absence of any localisation sensor. Thermal, relative humidity, light intensity properties of a place as well as time information were employed to model and reason about a place. Consequently, depending on the variety and reliability of the sensors employed, the Composer could be able to discriminate between rooms, corridors, a building, or an outdoor place with different degrees of uncertainty. The Context-Aware E-Pad (CAEP) application is designed and implemented to demonstrate how applications can employ a higher-level context without the need to directly deal with its composition, and how a context rule can be generated by associating the activities (decision events) of a mobile user with the context in which the decision events are produced.
|
54 |
CD-cars: cross domain context-aware recomender systemsSILVA, Douglas Véras e 21 July 2016 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-02-21T16:47:42Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
dvsTeseBiblioteca.pdf: 6571192 bytes, checksum: eb7914e5ffef25b8f01ff92d9a60c164 (MD5) / Made available in DSpace on 2017-02-21T16:47:42Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
dvsTeseBiblioteca.pdf: 6571192 bytes, checksum: eb7914e5ffef25b8f01ff92d9a60c164 (MD5)
Previous issue date: 2016-07-21 / FACEPE / Traditionally, single-domain recommender systems (SDRS) have achieved good results in recommending relevant items for users in order to solve the information overload problem. However, cross-domain recommender systems (CDRS) have emerged aiming to enhance SDRS by achieving some goals such as accuracy improvement, diversity, addressing new user and new item problems, among others. Instead of treating each domain independently, CDRS use knowledge acquired in a source domain (e.g. books) to improve the recommendation in a target domain (e.g. movies). Likewise SDRS research, collaborative filtering (CF) is considered the most popular and widely adopted approach in CDRS, because its implementation for any domain is relatively simple. In addition, its quality of recommendation is usually higher than that of content-based filtering (CBF) algorithms. In fact, the majority of the cross-domain collaborative filtering RS (CD-CFRS) can give better recommendations in comparison to single domain collaborative filtering recommender systems (SD-CFRS), leading to a higher users’ satisfaction and addressing cold-start, sparsity, and diversity problems. However, CD-CFRS may not necessarily be more accurate than SD-CFRS. On the other hand, context-aware recommender systems (CARS) deal with another relevant topic of research in the recommender systems area, aiming to improve the quality of recommendations too. Different contextual information (e.g., location, time, mood, etc.) can be leveraged in order to provide recommendations that are more suitable and accurate for a user depending on his/her context. In this way, we believe that the integration of techniques developed in isolation (cross-domain and contextaware) can be useful in a variety of situations, in which recommendations can be improved by information from different sources as well as they can be refined by considering specific contextual information. In this thesis, we define a novel formulation of the recommendation problem, considering both the availability of information from different domains (source and target) and the use of contextual information. Based on this formulation, we propose the integration of cross-domain and context-aware approaches for a novel recommender system (CD-CARS). To evaluate the proposed CD-CARS, we performed experimental evaluations through two real datasets with three different contextual dimensions and three distinct domains. The results of these evaluations have showed that the use of context-aware techniques can be considered as a good approach in order to improve the cross-domain recommendation quality in comparison to traditional CD-CFRS. / Tradicionalmente, “sistemas de recomendação de domínio único” (SDRS) têm alcançado bons resultados na recomendação de itens relevantes para usuários, a fim de resolver o problema da sobrecarga de informação. Entretanto, “sistemas de recomendação de domínio cruzado” (CDRS) têm surgido visando melhorar os SDRS ao atingir alguns objetivos, tais como: “melhoria de precisão”, “melhor diversidade”, abordar os problemas de “novo usuário” e “novo item”, dentre outros. Ao invés de tratar cada domínio independentemente, CDRS usam conhecimento adquirido em um domínio fonte (e.g. livros) a fim de melhorar a recomendação em um domínio alvo (e.g. filmes). Assim como acontece na área de pesquisa sobre SDRS, a filtragem colaborativa (CF) é considerada a técnica mais popular e amplamente utilizada em CDRS, pois sua implementação para qualquer domínio é relativamente simples. Além disso, sua qualidade de recomendação é geralmente maior do que a dos algoritmos baseados em filtragem de conteúdo (CBF). De fato, a maioria dos “sistemas de recomendação de domínio cruzado” baseados em filtragem colaborativa (CD-CFRS) podem oferecer melhores recomendações em comparação a “sistemas de recomendação de domínio único” baseados em filtragem colaborativa (SD-CFRS), aumentando o nível de satisfação dos usuários e abordando problemas tais como: “início frio”, “esparsidade” e “diversidade”. Entretanto, os CD-CFRS podem não ser mais precisos do que os SD-CFRS. Por outro lado, “sistemas de recomendação sensíveis à contexto” (CARS) tratam de outro tópico relevante na área de pesquisa de sistemas de recomendação, também visando melhorar a qualidade das recomendações. Diferentes informações contextuais (e.g. localização, tempo, humor, etc.) podem ser utilizados a fim de prover recomendações que são mais adequadas e precisas para um usuário dependendo de seu contexto. Desta forma, nós acreditamos que a integração de técnicas desenvolvidas separadamente (de “domínio cruzado” e “sensíveis a contexto”) podem ser úteis em uma variedade de situações, nas quais as recomendações podem ser melhoradas a partir de informações obtidas em diferentes fontes além de refinadas considerando informações contextuais específicas. Nesta tese, nós definimos uma nova formulação do problema de recomendação, considerando tanto a disponibilidade de informações de diferentes domínios (fonte e alvo) quanto o uso de informações contextuais. Baseado nessa formulação, nós propomos a integração de abordagens de “domínio cruzado” e “sensíveis a contexto” para um novo sistema de recomendação (CD-CARS). Para avaliar o CD-CARS proposto, nós realizamos avaliações experimentais através de dois “conjuntos de dados” com três diferentes dimensões contextuais e três domínios distintos. Os resultados dessas avaliações mostraram que o uso de técnicas sensíveis a contexto pode ser considerado como uma boa abordagem a fim de melhorar a qualidade de recomendações de “domínio cruzado” em comparação às recomendações de CD-CFRS tradicionais.
|
55 |
A Distributed Architecture for Computing Context in Mobile DevicesDargie, Waltenegus 13 June 2006 (has links)
Context-aware computing aims at making mobile devices sensitive to the social and physical settings in which they are used. A necessary requirement to achieve this goal is to enable those devices to establish a shared understanding of the desired settings. Establishing a shared understanding entails the need to manipulate sensed data in order to capture a real world situation wholly, conceptually, and meaningfully. Quite often, however, the data acquired from sensors can be inexact, incomplete, and/or uncertain. Inexact sensing arises mostly due to the inherent limitation of sensors to capture a real world phenomenon precisely. Incompleteness is caused by the absence of a mechanism to capture certain real-world aspects; and uncertainty stems from the lack of knowledge about the reliability of the sensing sources, such as their sensing range, accuracy, and resolution. The thesis identifies a set of criteria for a context-aware system to capture dynamic real-world situations. On the basis of these criteria, a distributed architecture is designed, implemented and tested. The architecture consists of Primitive Context Servers, which abstract the acquisition of primitive contexts from physical sensors; Aggregators, to minimise error caused by inconsistent sensing, and to gather correlated primitive contexts pertaining to a particular entity or situation; a Knowledge Base and an Empirical Ambient Knowledge Component, to model dynamic properties of entities with facts and beliefs; and a Composer, to reason about dynamic real-world situations on the basis of sensed data. Two additional components, namely, the Event Handler and the Rule Organiser, are responsible for dynamically generating context rules by associating decision events ? signifying a user?s activity ? with the context in which those decision events are produced. Context-rules are essential elements with which the behaviour of mobile devices can be controlled and useful services can be provided. Four estimation and recognition schemes, namely, Fuzzy Logic, Hidden Markov Models, Dempster-Schafer Theory of Evidence, and Bayesian Networks, are investigated, and their suitability for the implementation of the components of the architecture of the thesis is studied. Subsequently, fuzzy sets are chosen to model dynamic properties of entities. Dempster-Schafer?s combination theory is chosen for aggregating primitive contexts; and Bayesian Networks are chosen to reason about a higher-level context, which is an abstraction of a real-world situation. A Bayesian Composer is implemented to demonstrate the capability of the architecture in dealing with uncertainty, in revising the belief of the Empirical Ambient Knowledge Component, in dealing with the dynamics of primitive contexts and in dynamically defining contextual states. The Composer could be able to reason about the whereabouts of a person in the absence of any localisation sensor. Thermal, relative humidity, light intensity properties of a place as well as time information were employed to model and reason about a place. Consequently, depending on the variety and reliability of the sensors employed, the Composer could be able to discriminate between rooms, corridors, a building, or an outdoor place with different degrees of uncertainty. The Context-Aware E-Pad (CAEP) application is designed and implemented to demonstrate how applications can employ a higher-level context without the need to directly deal with its composition, and how a context rule can be generated by associating the activities (decision events) of a mobile user with the context in which the decision events are produced.
|
56 |
Context-aware and adaptable eLearning systemsStoyanov, Stanimir January 2012 (has links)
This thesis proposed solutions to some shortcomings to current eLearning architectures. The proposed DeLC architecture supports context-aware and adaptable provision of eLearning services and electronic content. The architecture is fully distributed and integrates service-oriented development with agent technology. Central to this architecture is that a node is our unit of computation (known as eLearning node) which can have purely service-oriented architecture, agent-oriented architecture or mixed architecture. Three eLeaerning Nodes have been implemented in order to demonstrate the vitality of the DeLC concept. The Mobile eLearning Node uses a three-level communication network, called InfoStations network, supporting mobile service provision. The services, displayed on this node, are to be aware of its context, gather required learning material and adapted to the learner request. This is supported trough a multi-layered hybrid (service- and agent-oriented) architecture whose kernel is implemented as middleware. For testing of the middleware a simulation environment has been developed. In addition, the DeLC development approach is proposed. The second eLearning node has been implemented as Education Portal. The architecture of this node is poorly service-oriented and it adopts a client-server architecture. In the education portal, there are incorporated education services and system services, called engines. The electronic content is kept in Digital Libraries. Furthermore, in order to facilitate content creators in DeLC, the environment Selbo2 was developed. The environment allows for creating new content, editing available content, as well as generating educational units out of preexisting standardized elements. In the last two years, the portal is used in actual education at the Faculty of Mathematics and Informatics, University of Plovdiv. The third eLearning node, known as Agent Village, exhibits a purely agent-oriented architecture. The purpose of this node is to provide intelligent assistance to the services deployed on the Education Pportal. Currently, two kinds of assistants are implemented in the node - eTesting Assistants and Refactoring eLearning Environment (ReLE). A more complex architecture, known as Education Cluster, is presented in this thesis as well. The Education Cluster incorporates two eLearning nodes, namely the Education Portal and the Agent Village. eLearning services and intelligent agents interact in the cluster.
|
57 |
Context aware pre-crash system for vehicular ad hoc networks using dynamic Bayesian modelAswad, Musaab Z. January 2014 (has links)
Tragically, traffic accidents involving drivers, motorcyclists and pedestrians result in thousands of fatalities worldwide each year. For this reason, making improvements to road safety and saving people's lives is an international priority. In recent years, this aim has been supported by Intelligent Transport Systems, offering safety systems and providing an intelligent driving environment. The development of wireless communications and mobile ad hoc networks has led to improvements in intelligent transportation systems heightening these systems' safety. Vehicular ad hoc Networks comprise an important technology; included within intelligent transportation systems, they use dedicated short-range communications to assist vehicles to communicate with one another, or with those roadside units in range. This form of communication can reduce road accidents and provide a safer driving environment. A major challenge has been to design an ideal system to filter relevant contextual information from the surrounding environment, taking into consideration the contributory factors necessary to predict the likelihood of a crash with different levels of severity. Designing an accurate and effective pre-crash system to avoid front and back crashes or mitigate their severity is the most important goal of intelligent transportation systems, as it can save people's lives. Furthermore, in order to improve crash prediction, context-aware systems can be used to collect and analyse contextual information regarding contributory factors. The crash likelihood in this study is considered to operate within an uncertain context, and is defined according to the dynamic interaction between the driver, the vehicle and the environment, meaning it is affected by contributory factors and develops over time. As a crash likelihood is considered to be an uncertain context and develops over time, any usable technology must overcome this uncertainty in order to accurately predict crashes. This thesis presents a context-aware pre-crash collision prediction system, which captures information from the surrounding environment, the driver and other vehicles on the road. It utilises a Dynamic Bayesian Network as a reasoning model to predict crash likelihood and severity level, whether any crash will be fatal, serious, or slight. This is achieved by combining the above mentioned information and performing probabilistic reasoning over time. The thesis introduces novel context aware on-board unit architecture for crash prediction. The architecture is divided into three phases: the physical, the thinking and the application phase; these which represent the three main subsystems of a context-aware system: sensing, reasoning and acting. In the thinking phase, a novel Dynamic Bayesian Network framework is introduced to predict crash likelihood. The framework is able to perform probabilistic reasoning to predict uncertainty, in order to accurately predict a crash. It divides crash severity levels according to the UK department for transport, into fatal, serious and slight. GeNIe version 2.0 software was used to implement and verify the Dynamic Bayesian Network model. This model has been verified using both syntactical and real data provided by the UK department for transport in order to demonstrate the prediction accuracy of the proposed model and to demonstrate the importance of including a large amount of contextual information in the prediction process. The evaluation of the proposed system delivered high-fidelity results, when predicting crashes and their severity. This was judged by inputting different sensor readings and performing several experiments. The findings of this study has helped to predict the probability of a crash at different severity levels, accounting for factors that may be involved in causing a crash, thereby representing a valuable step towards creating a safer traffic network.
|
58 |
Nonparametric Discovery of Human Behavior Patterns from Multimodal DataSun, Feng-Tso 01 May 2014 (has links)
Recent advances in sensor technologies and the growing interest in context- aware applications, such as targeted advertising and location-based services, have led to a demand for understanding human behavior patterns from sensor data. People engage in routine behaviors. Automatic routine discovery goes beyond low-level activity recognition such as sitting or standing and analyzes human behaviors at a higher level (e.g., commuting to work). The goal of the research presented in this thesis is to automatically discover high-level semantic human routines from low-level sensor streams. One recent line of research is to mine human routines from sensor data using parametric topic models. The main shortcoming of parametric models is that they assume a fixed, pre-specified parameter regardless of the data. Choosing an appropriate parameter usually requires an inefficient trial-and-error model selection process. Furthermore, it is even more difficult to find optimal parameter values in advance for personalized applications. The research presented in this thesis offers a novel nonparametric framework for human routine discovery that can infer high-level routines without knowing the number of latent low-level activities beforehand. More specifically, the frame-work automatically finds the size of the low-level feature vocabulary from sensor feature vectors at the vocabulary extraction phase. At the routine discovery phase, the framework further automatically selects the appropriate number of latent low-level activities and discovers latent routines. Moreover, we propose a new generative graphical model to incorporate multimodal sensor streams for the human activity discovery task. The hypothesis and approaches presented in this thesis are evaluated on public datasets in two routine domains: two daily-activity datasets and a transportation mode dataset. Experimental results show that our nonparametric framework can automatically learn the appropriate model parameters from multimodal sensor data without any form of manual model selection procedure and can outperform traditional parametric approaches for human routine discovery tasks.
|
59 |
Smart Interventions for Effective Medication AdherenceSingh, Neetu 18 July 2016 (has links)
In this research we present a model for medication adherence from information systems and technologies (IS/IT) perspective. Information technology applications for healthcare have the potential to improve cost-effectiveness, quality and accessibility of healthcare. To date, measurement of patient medication adherence and use of interventions to improve adherence are rare in routine clinical practice. IS/IT perspective helps in leveraging the technology advancements to develop a health IT system for effectively measuring medication adherence and administering interventions.
Majority of medication adherence studies have focused on average medication adherence. Average medication adherence is the ratio of the number of doses consumed and the number of doses prescribed. It does not matter in which order or pattern patients consume the dose. Patients with enormously diverse dosing behavior can achieve the same average levels of medication adherence. The same outcomes with different levels of adherence raise the possibility that patterns of adherence affect the effectiveness of medication adherence. We propose that medication adherence research should utilize effective medication adherence (EMA), derived by including both the pattern and average medication adherence for a patient.
Using design science research (DSR) approach we have developed a model as an artifact for smart interventions. We have leveraged behavior change techniques (BCTs) based on the behavior change theories to design smart intervention. Because of the need for real time requirements for the system, we are also focusing on hierarchical control system theory and reference model architecture (RMA). The benefit of using this design is to enable an intervention to be administered dynamically on a need basis. A key distinction from existing systems is that the developed model leverages probabilistic measure instead of static schedule. We have evaluated and validated the model using formal proofs and by domain experts.
The research adds to the IS knowledge base by providing the theory based smart interventions leveraging BCTs and RMA for improving the medication adherence. It introduces EMA as a measurement of medication adherence to healthcare systems. Smart interventions based on EMA will further lead to reducing the healthcare cost by improving prescription outcomes.
|
60 |
A Framework to Support Opportunistic Groups in Context-Aware ApplicationsdeFreitas, Adrian A. 01 May 2016 (has links)
Context-aware computing utilizes information about users and/or their environments in order to provide relevant information and services. To date, however, most context-aware applications only take advantage of contexts that can either be produced on the device they are running on, or on external devices that are known beforehand. While there are many application domains where sharing context is useful and/or necessary, creating these applications is currently difficult because there is no easy way for devices to share information without 1) explicitly directing them to do so, or 2) through some form of advanced user coordination (e.g., sharing credentials and/or IP addresses, installing and running the same software). This makes these techniques useful when the need to share context is known a priori, but impractical for the one time, opportunistic encounters which make up the majority of users’ lives. To address this problem, this thesis presents the Group Context Framework (GCF), a software framework that allows devices to form groups and share context with minimal prior coordination. GCF lets devices openly discover and request context from each other. The framework then lets devices intelligently and autonomously forms opportunistic groups and work together without requiring either the application developer or the user to know of these devices beforehand. GCF supports use cases where devices only need to share information once or spontaneously. Additionally, the framework provides standardized mechanisms for applications to collect, store, and share context. This lets devices form groups and work together, even when they are performing logically separate tasks (i.e., running different applications). Through the development of GCF, this thesis identifies the conceptual and software abstractions needed to support opportunistic groups in context-aware applications. As part of our design process, we looked at current contextsharing applications, systems, and frameworks, and developed a conceptual model that identifies the most common conditions that cause users/devices to form a group. We then created a framework that supports grouping across this entire model. Through the creation of four prototype systems, we show how the ability to form opportunistic groups of devices can increase users and devices’ access to timely information and services. Finally, we had 20 developers evaluate GCF, and verified that the framework supports a wide range of existing and novel use cases. Collectively, this thesis demonstrates the utility of opportunistic groups in context-aware computing, and highlights the critical challenges that need to be addressed to make opportunistic context sharing both practical and usable in real-world settings. The contributions of this thesis are: 1. A conceptual model, based on an analysis of prior literature, which describes the conditions under which users and/or devices form and work in groups. 2. An implementation of the Group Context Framework, which highlights the software abstractions and architecture needed to support all of the group types identified in our conceptual model. 3. A demonstration of the value of opportunistic groups in context aware computing, through the creation of four major systems and numerous smaller applications. 4. A validation of GCF’s robustness, through an examination of 65 ideas submitted by 20 developers. 5. An examination of the challenges associated with utilizing opportunistic groups in context-aware applications, based on our own experiences using GCF, as well as from issues raised by developers from academia and industry.
|
Page generated in 0.0636 seconds