• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Novel User Activity Prediction Model For Context Aware Computing Systems

Peker, Serhat 01 September 2011 (has links) (PDF)
In the last decade, with the extensive use of mobile electronic and wireless communication devices, there is a growing need for context aware applications and many pervasive computing applications have become integral parts of our daily lives. Context aware recommender systems are one of the popular ones in this area. Such systems surround the users and integrate with the environment / hence, they are aware of the users&#039 / context and use that information to deliver personalized recommendations about everyday tasks. In this manner, predicting user&rsquo / s next activity preferences with high accuracy improves the personalized service quality of context aware recommender systems and naturally provides user satisfaction. Predicting activities of people is useful and the studies on this issue in ubiquitous environment are considerably insufficient. Thus, this thesis proposes an activity prediction model to forecast a user&rsquo / s next activity preference using past preferences of the user in certain contexts and current contexts of user in ubiquitous environment. The proposed model presents a new approach for activity prediction by taking advantage of ontology. A prototype application is implemented to demonstrate the applicability of this proposed model and the obtained outputs of a sample case on this application revealed that the proposed model can reasonably predict the next activities of the users.
2

A methodology for contextual recommendation using artificial neural networks

Mustafa, Ghulam January 2018 (has links)
Recommender systems are an advanced form of software applications, more specifically decision-support systems, that efficiently assist the users in finding items of their interest. Recommender systems have been applied to many domains from music to e-commerce, movies to software services delivery and tourism to news by exploiting available information to predict and provide recommendations to end user. The suggestions generated by recommender systems tend to narrow down the list of items which a user may overlook due to the huge variety of similar items or users’ lack of experience in the particular domain of interest. While the performance of traditional recommender systems, which rely on relatively simpler information such as content and users’ filters, is widely accepted, their predictive capability perfomrs poorly when local context of the user and situated actions have significant role in the final decision. Therefore, acceptance and incorporation of context of the user as a significant feature and development of recommender systems utilising the premise becomes an active area of research requiring further investigation of the underlying algorithms and methodology. This thesis focuses on categorisation of contextual and non-contextual features within the domain of context-aware recommender system and their respective evaluation. Further, application of the Multilayer Perceptron Model (MLP) for generating predictions and ratings from the contextual and non-contextual features for contextual recommendations is presented with support from relevant literature and empirical evaluation. An evaluation of specifically employing artificial neural networks (ANNs) in the proposed methodology is also presented. The work emphasizes on both algorithms and methodology with three points of consideration: contextual features and ratings of particular items/movies are exploited in several representations to improve the accuracy of recommendation process using artificial neural networks (ANNs), context features are combined with user-features to further improve the accuracy of a context-aware recommender system and lastly, a combination of the item/movie features are investigated within the recommendation process. The proposed approach is evaluated on the LDOS-CoMoDa dataset and the results are compared with state-of-the-art approaches from relevant published literature.
3

A hybrid model for context-aware proactive recommendation / Un modèle hybride pour la recommandation proactive et contextuelle

Akermi, Imen 05 July 2017 (has links)
L'accès aux informations pertinentes, adaptées aux besoins et au profil de l'utilisateur est un enjeu majeur dans le cadre actuel caractérisé par une prolifération massive des ressources d'information hétérogènes. Le développement d'appareils mobiles équipés de plusieurs fonctionnalités telles que la caméra, le WIFI, la géo-localisation et bien plus d'autres permettent aux systèmes mobiles de recommandation actuels d'être hautement contextualisés et pouvant fournir à l'utilisateur des informations pertinentes au bon moment quand il en a le plus besoin, sans attendre qu'il établisse une interaction avec son appareil. C'est dans ce cadre que s'insère notre travail de thèse. En effet, nous proposons une approche de recommandation contextuelle et proactive dans un environnement mobile qui permet de recommander des informations pertinentes à l'utilisateur sans attendre à ce que ce dernier initie une interaction. Un système proactif peut prendre la forme d'un guide touristique personnalisé qui se base sur la localisation et les préférences de l'utilisateur pour suggérer à ce dernier des endroits intéressants sans qu'il fournisse, sa préférence ou une requête explicite. Cela permettra de réduire les efforts, le temps et l'interaction de l'utilisateur avec son appareil mobile et de présenter les informations pertinentes au bon moment et au bon endroit. Cette approche prend aussi en considération les situations où la recommandation pourrait déranger l'utilisateur. Il s'agit d'équilibrer le processus de recommandation contre les interruptions intrusives. En effet, il existe différents facteurs et situations qui rendent l'utilisateur moins ouvert aux recommandations. Comme nous travaillons dans le contexte des appareils mobiles, nous considérons que les applications mobiles telles que la caméra, le clavier, l'agenda, etc., sont de bons représentants de l'interaction de l'utilisateur avec son appareil puisqu'ils représentent en quelque sorte la plupart des activités qu'un utilisateur pourrait entreprendre avec son appareil mobile au quotidien, comme envoyer des messages, converser, tweeter, naviguer ou prendre des photos. / Just-In-Time recommender systems involve all systems able to provide recommendations tailored to the preferences and needs of users in order to help them access useful and interesting resources within a large data space. The user does not need to formulate a query, this latter is implicit and corresponds to the resources that match the user's interests at the right time. Our work falls within this framework and focuses on developing a proactive context-aware recommendation approach for mobile devices that covers many domains. It aims at recommending relevant items that match users' personal interests at the right time without waiting for the users to initiate any interaction. Indeed, the development of mobile devices equipped with persistent data connections, geolocation, cameras and wireless capabilities allows current context-aware recommender systems (CARS) to be highly contextualized and proactive. We also take into consideration to which degree the recommendation might disturb the user. It is about balancing the process of recommendation against intrusive interruptions. As a matter of fact, there are different factors and situations that make the user less open to recommendations. As we are working within the context of mobile devices, we consider that mobile applications functionalities such as the camera, the keyboard, the agenda, etc., are good representatives of the user's interaction with his device since they somehow stand for most of the activities that a user could use in a mobile device in a daily basis such as texting messages, chatting, tweeting, browsing or taking selfies and pictures.
4

Jointly integrating current context and social influence for improving recommendation / Intégration simultanée du contexte actuel et de l'influence sociale pour l'amélioration de la recommandation

Bambia, Meriam 13 June 2017 (has links)
La diversité des contenus recommandation et la variation des contextes des utilisateurs rendent la prédiction en temps réel des préférences des utilisateurs de plus en plus difficile mettre en place. Toutefois, la plupart des approches existantes n'utilisent que le temps et l'emplacement actuels séparément et ignorent d'autres informations contextuelles sur lesquelles dépendent incontestablement les préférences des utilisateurs (par exemple, la météo, l'occasion). En outre, ils ne parviennent pas considérer conjointement ces informations contextuelles avec les interactions sociales entre les utilisateurs. D'autre part, la résolution de problèmes classiques de recommandation (par exemple, aucun programme de télévision vu par un nouvel utilisateur connu sous le nom du problème de démarrage froid et pas assez d'items co-évalués par d'autres utilisateurs ayant des préférences similaires, connu sous le nom du problème de manque de donnes) est d'importance significative puisque sont attaqués par plusieurs travaux. Dans notre travail de thèse, nous proposons un modèle probabiliste qui permet exploiter conjointement les informations contextuelles actuelles et l'influence sociale afin d'améliorer la recommandation des items. En particulier, le modèle probabiliste vise prédire la pertinence de contenu pour un utilisateur en fonction de son contexte actuel et de son influence sociale. Nous avons considérer plusieurs éléments du contexte actuel des utilisateurs tels que l'occasion, le jour de la semaine, la localisation et la météo. Nous avons utilisé la technique de lissage Laplace afin d'éviter les fortes probabilités. D'autre part, nous supposons que l'information provenant des relations sociales a une influence potentielle sur les préférences des utilisateurs. Ainsi, nous supposons que l'influence sociale dépend non seulement des évaluations des amis mais aussi de la similarité sociale entre les utilisateurs. Les similarités sociales utilisateur-ami peuvent être établies en fonction des interactions sociales entre les utilisateurs et leurs amis (par exemple les recommandations, les tags, les commentaires). Nous proposons alors de prendre en compte l'influence sociale en fonction de la mesure de similarité utilisateur-ami afin d'estimer les préférences des utilisateurs. Nous avons mené une série d'expérimentations en utilisant un ensemble de donnes réelles issues de la plateforme de TV sociale Pinhole. Cet ensemble de donnes inclut les historiques d'accès des utilisateurs-vidéos et les réseaux sociaux des téléspectateurs. En outre, nous collectons des informations contextuelles pour chaque historique d'accès utilisateur-vidéo saisi par le système de formulaire plat. Le système de la plateforme capture et enregistre les dernières informations contextuelles auxquelles le spectateur est confronté en regardant une telle vidéo.Dans notre évaluation, nous adoptons le filtrage collaboratif axé sur le temps, le profil dépendant du temps et la factorisation de la matrice axe sur le réseau social comme tant des modèles de référence. L'évaluation a port sur deux tâches de recommandation. La première consiste sélectionner une liste trie de vidéos. La seconde est la tâche de prédiction de la cote vidéo. Nous avons évalué l'impact de chaque élément du contexte de visualisation dans la performance de prédiction. Nous testons ainsi la capacité de notre modèle résoudre le problème de manque de données et le problème de recommandation de démarrage froid du téléspectateur. Les résultats expérimentaux démontrent que notre modèle surpasse les approches de l'état de l'art fondes sur le facteur temps et sur les réseaux sociaux. Dans les tests des problèmes de manque de donnes et de démarrage froid, notre modèle renvoie des prédictions cohérentes différentes valeurs de manque de données. / Due to the diversity of alternative contents to choose and the change of users' preferences, real-time prediction of users' preferences in certain users' circumstances becomes increasingly hard for recommender systems. However, most existing context-aware approaches use only current time and location separately, and ignore other contextual information on which users' preferences may undoubtedly depend (e.g. weather, occasion). Furthermore, they fail to jointly consider these contextual information with social interactions between users. On the other hand, solving classic recommender problems (e.g. no seen items by a new user known as cold start problem, and no enough co-rated items with other users with similar preference as sparsity problem) is of significance importance since it is drawn by several works. In our thesis work, we propose a context-based approach that leverages jointly current contextual information and social influence in order to improve items recommendation. In particular, we propose a probabilistic model that aims to predict the relevance of items in respect with the user's current context. We considered several current context elements such as time, location, occasion, week day, location and weather. In order to avoid strong probabilities which leads to sparsity problem, we used Laplace smoothing technique. On the other hand, we argue that information from social relationships has potential influence on users' preferences. Thus, we assume that social influence depends not only on friends' ratings but also on social similarity between users. We proposed a social-based model that estimates the relevance of an item in respect with the social influence around the user on the relevance of this item. The user-friend social similarity information may be established based on social interactions between users and their friends (e.g. recommendations, tags, comments). Therefore, we argue that social similarity could be integrated using a similarity measure. Social influence is then jointly integrated based on user-friend similarity measure in order to estimate users' preferences. We conducted a comprehensive effectiveness evaluation on real dataset crawled from Pinhole social TV platform. This dataset includes viewer-video accessing history and viewers' friendship networks. In addition, we collected contextual information for each viewer-video accessing history captured by the plat form system. The platform system captures and records the last contextual information to which the viewer is faced while watching such a video. In our evaluation, we adopt Time-aware Collaborative Filtering, Time-Dependent Profile and Social Network-aware Matrix Factorization as baseline models. The evaluation focused on two recommendation tasks. The first one is the video list recommendation task and the second one is video rating prediction task. We evaluated the impact of each viewing context element in prediction performance. We tested the ability of our model to solve data sparsity and viewer cold start recommendation problems. The experimental results highlighted the effectiveness of our model compared to the considered baselines. Experimental results demonstrate that our approach outperforms time-aware and social network-based approaches. In the sparsity and cold start tests, our approach returns consistently accurate predictions at different values of data sparsity.

Page generated in 0.0675 seconds