• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling static creep with stress reversals of mastic asphalt.

Tigabu, Romel January 2011 (has links)
This thesis studies the strain response of mastic asphalt to arbitrary tension, arbitrary compression, alternating tension/compression, loading, zigzag loading and sinusoidal loading. In order to model the strain response to different loading histories, the scissors model is employed. Matlab modules are developed that are able to predict strain response not only for creep loading but also for other types of non constant stress loading such as zigzag loading and sinusoidal loading. In addition, another phenomological model, i.e. the viscoelastoplastic continuum damage model, is summarized and discussed in detail with respect to its applicability for the available data set.
2

A Numerical Study Of Localized Necking During Forming Of Aluminium Alloy Tubes Using A Continuum Damage Model

Varma, N Siva Prasad 12 1900 (has links) (PDF)
No description available.
3

Um modelo multiescala concorrente para representar o processo de fissuração do concreto. / A concurrent multiscale model to represent the crack process of concrete.

Rodrigues, Eduardo Alexandre 06 November 2015 (has links)
Este trabalho propõe uma técnica de modelagem multiescala concorrente do concreto considerando duas escalas distintas: a mesoescala, onde o concreto é modelado como um material heterogêneo, e a macroescala, na qual o concreto é tratado como um material homogêneo. A heterogeneidade da estrutura mesoscópica do concreto é idealizada considerando três fases distintas, compostas pelos agregados graúdos e argamassa (matriz), estes considerados materiais homogêneos, e zona de transição interfacial (ZTI), tratada como a parte mais fraca entre as três fases. O agregado graúdo é gerado a partir de uma curva granulométrica e posicionado na matriz de forma aleatória. Seu comportamento mecânico é descrito por um modelo constitutivo elástico-linear, devido a sua maior resistência quando comparado com as outras duas fases do concreto. Elementos finitos contínuos com alta relação de aspecto em conjunto com um modelo constitutivo de dano são usados para representar o comportamento não linear do concreto, decorrente da iniciação de fissuras na ZTI e posterior propagação para a matriz, dando lugar à formação de macrofissuras. Os elementos finitos de interface com alta relação de aspecto são inseridos entre todos os elementos regulares da matriz e entre os da matriz e agregados, representando a ZTI, tornando-se potenciais caminhos de propagação de fissuras. No estado limite, quando a espessura do elemento de interface tende a zero (h ?0) e, consequentemente, a relação de aspecto tende a infinito, estes elementos apresentam a mesma cinemática da aproximação contínua de descontinuidades fortes (ACDF), sendo apropriados para representar a formação de descontinuidades associados a fissuras, similar aos modelos coesivos. Um modelo de dano à tração é proposto para representar o comportamento mecânico não linear das interfaces, associado à formação de fissuras, ou até mesmo ao eventual fechamento destas. A fim de contornar os problemas causados pela malha de elementos finitos de transição entre as malhas da macro e da mesoescala, que, em geral, apresentam diferenças expressivas 5 de refinamento, utiliza-se uma técnica recente de acoplamento de malhas não conformes. Esta técnica é baseada na definição de elementos finitos de acoplamento (EFAs), os quais são capazes de estabelecer a continuidade de deslocamento entre malhas geradas de forma completamente independentes, sem aumentar a quantidade total de graus de liberdade do problema, podendo ser utilizados tanto para acoplar malhas não sobrepostas quanto sobrepostas. Para tornar possível a análise em multiescala em casos nos quais a região de localização de deformações não pode ser definida a priori, propõe-se uma técnica multiescala adaptativa. Nesta abordagem, usa-se a distribuição de tensões da escala macroscópica como um indicador para alterar a modelagem das regiões críticas, substituindo-se a macroescala pela mesoescala durante a análise. Consequentemente, a malha macroscópica é automaticamente substituída por uma malha mesoscópica, onde o comportamento não linear está na iminência de ocorrer. Testes numéricos são desenvolvidos para mostrar a capacidade do modelo proposto de representar o processo de iniciação e propagação de fissuras na região tracionada do concreto. Os resultados numéricos são comparados com os resultados experimentais ou com aqueles obtidos através da simulação direta em mesoescala (SDM). / A concurrent multiscale analysis of concrete is presented, in which two distinct scales are considered: the mesoscale, where the concrete is modeled as a heterogeneous material and the macroscale that treats the concrete as a homogeneous material. The mesostructure heterogeneities are idealized as three phase materials composed of the coarse aggregates, mortar matrix and the interfacial transition zone (ITZ). The coarse aggregates are generated from a grading curve and placed into the mortar matrix randomly. Their behavior is described using an elastic-linear constitutive model due to their significant higher strength when compared with the other two phases of the concrete. Special continuum finite elements with a high aspect ratio and a damage constitutive model are used to describe the nonlinear behavior associated to the propagation of cracks, which initiates in the ITZ and then propagates to the mortar matrix given place to a macro-crack formation. These interface elements with a high aspect ratio are inserted in between all regular finite elements of the mortar matrix and in between the mortar matrix and aggregate elements, representing the ITZ. In the limit case, when the thickness of interface elements tends to zero (h ?0) and consequently the aspect ratio tends to infinite, these elements present the same kinematics as the continuous strong discontinuity approach (CSDA), so that they are suitable to represent the formation of discontinuities associated to cracks, similar to cohesive models. A tensile damage model is proposed to model the nonlinear mechanical behavior of the interfaces, associated to the crack formation and also to the possible crack closure. To avoid transition meshes between the macro and the mesoscale meshes, a new technique for coupling non-matching meshes is used. This technique is based on the definition of coupling finite elements (CFEs), which can ensure the continuity of displacement between independent meshes, without increasing the total number of degrees of freedom of the problem. This technique can be used to couple non-overlapping and overlapping meshes.To make possible the concurrent multiscale analysis, where the strain localization region cannot be defined a priori, an adaptive multiscale model is proposed. In this approach the macroscale stress distribution is used as an indicator to properly change from the macroscale to the mesoscale modeling in the critical regions during the analysis. Consequently, the macroscopic mesh is automatically replaced by a mesoscopic mesh where the nonlinear behavior is imminent. A variety of tests are performed to show the ability of the proposed methodology in predicting the behavior of initiation and propagation of cracks in the tensile region of the concrete. The numerical results are compared with the experimental ones or with those obtained by the direct simulation in mesoscale (DSM).
4

Αριθμητική προσομοίωση της μηχανικής συμπεριφοράς συνδέσεων με κόλλα πολύστρωτων πλακών

Τσαλούφη, Μαρίνα 28 February 2013 (has links)
Στην παρούσα διπλωματική εργασία αναπτύχθηκε τρισδιάστατο αριθμητικό μοντέλο με βάση την μέθοδο των πεπερασμένων στοιχείων για την προσομοίωση της μηχανικής συμπεριφοράς συνδέσεων με κόλλα πολύστρωτων πλακών. Το μοντέλο αναπτύχθηκε χρησιμοποιώντας το εμπορικό πακέτο πεπερασμένων στοιχείων ANSYS. Για την προσομοίωση της συμπεριφοράς της κόλλας χρησιμοποιήθηκαν δύο προσεγγίσεις: η μοντελοποίηση της ζώνης συνοχής και η μοντελοποίηση της βλάβης του συνεχούς μέσου. Οι δύο αυτές προσεγγίσεις συγκρίθηκαν τόσο ως προς την αξιοπιστία τους, η οποία καθορίζεται από την σύγκριση με πειραματικά αποτελέσματα, όσο και ως προς την ευκολία εφαρμογής τους, η οποία καθορίζεται από τα δεδομένα που απαιτούνται και τον υπολογιστικό χρόνο. Η σύγκριση των δύο μεθοδολογιών έγινε στην βάση της εφαρμογής τους για την προσομοίωση της μηχανικής συμπεριφοράς σε φόρτιση τύπου Ι σύνδεσης με κόλλα μεταξύ δύο ψευδοισότροπων CFRP πολύστρωτων πλακών. Το συγκεκριμένο πρόβλημα επελέγη διότι υπήρχαν διαθέσιμα πειραματικά αποτελέσματα προς σύγκριση στο Εργαστήριο. Οι πολύστρωτες πλάκες μοντελοποιήθηκαν χρησιμοποιώντας το στρωματικό στοιχείο του ANSYS SOLID185. Στο στοιχείο αυτό κάθε στρώση μοντελοποιείται ξεχωριστά ως ορθότροπο υλικό. Η εφαρμογή της μοντελοποίησης της ζώνης συνοχής έγινε μέσω της χρήσης του στοιχείου του ANSYS INTER205. Για την εφαρμογή της μοντελοποίησης της βλάβης του συνεχούς μέσου αναπτύχθηκε μακρο-ρουτίνα χρησιμοποιώντας την γλώσσα προγραμματισμού του κώδικα ANSYS. Τα αριθμητικά αποτελέσματα έδειξαν ότι και οι δύο μεθοδολογίες προσομοιώνουν με ικανοποιητική ακρίβεια την καμπύλη δύναμης-μετατόπισης της σύνδεσης. Σχετικά με την ευκολία εφαρμογής των δύο μεθόδων, η σύγκριση έδειξε ότι η μέθοδος της μοντελοποίησης της ζώνης συνοχής υπερτερεί έναντι της μεθόδου μοντελοποίησης της βλάβης του συνεχούς μέσου διότι απαιτεί μικρότερο αριθμό δεδομένων, μειονεκτεί όμως ως προς τον απαιτούμενο υπολογιστικό χρόνο. Και οι δύο μέθοδοι κρίνονται κατάλληλες για χρήση στην αριθμητική σχεδίαση συνδέσεων με κόλλα. / This work is based on the development of three-dimensional numerical model based on the finite element method to simulate the mechanical behavior of adhesive bonded joints in composite materials. The model was developed in finite element procedures under the framework of the commercial software ANSYS. To simulate the behavior of the adhesive used two approaches: the cohesive zone modeling (CZM) and the continuum damage modeling (CDM). These two approaches are compared both in terms of reliability, which is determined by comparison with experimental results, and applicability, which is determined by the parameters required and the computational time. The comparison between the two methodologies was the basis of their application to simulate the mechanical behavior under mode-I fracture behavior of adhesively bonded joints between two CFRP plates. This problem was chosen because there were experimental results to compare in the laboratory. The sandwich plates are modeled using the stromal element of ANSYS SOLID185. This item each layer separately modeled as orthotropic material. The adhesive is modeled using the interface element of ANSYS INTER205. For the purpose of modeling the failure of continuous medium developed macro routine using the programming language code ANSYS. The numerical results showed that both methodologies simulate sufficient precision the curve force-displacement of the connection. About applicability of the two methods, the comparison showed that the process of cohesive zone modeling outweighs the process of continuum damage modeling because it requires less number of parameters, but falls to the computational time. Both methods are suitable for use in numerical design of adhesively bonded joints.
5

Um modelo multiescala concorrente para representar o processo de fissuração do concreto. / A concurrent multiscale model to represent the crack process of concrete.

Eduardo Alexandre Rodrigues 06 November 2015 (has links)
Este trabalho propõe uma técnica de modelagem multiescala concorrente do concreto considerando duas escalas distintas: a mesoescala, onde o concreto é modelado como um material heterogêneo, e a macroescala, na qual o concreto é tratado como um material homogêneo. A heterogeneidade da estrutura mesoscópica do concreto é idealizada considerando três fases distintas, compostas pelos agregados graúdos e argamassa (matriz), estes considerados materiais homogêneos, e zona de transição interfacial (ZTI), tratada como a parte mais fraca entre as três fases. O agregado graúdo é gerado a partir de uma curva granulométrica e posicionado na matriz de forma aleatória. Seu comportamento mecânico é descrito por um modelo constitutivo elástico-linear, devido a sua maior resistência quando comparado com as outras duas fases do concreto. Elementos finitos contínuos com alta relação de aspecto em conjunto com um modelo constitutivo de dano são usados para representar o comportamento não linear do concreto, decorrente da iniciação de fissuras na ZTI e posterior propagação para a matriz, dando lugar à formação de macrofissuras. Os elementos finitos de interface com alta relação de aspecto são inseridos entre todos os elementos regulares da matriz e entre os da matriz e agregados, representando a ZTI, tornando-se potenciais caminhos de propagação de fissuras. No estado limite, quando a espessura do elemento de interface tende a zero (h ?0) e, consequentemente, a relação de aspecto tende a infinito, estes elementos apresentam a mesma cinemática da aproximação contínua de descontinuidades fortes (ACDF), sendo apropriados para representar a formação de descontinuidades associados a fissuras, similar aos modelos coesivos. Um modelo de dano à tração é proposto para representar o comportamento mecânico não linear das interfaces, associado à formação de fissuras, ou até mesmo ao eventual fechamento destas. A fim de contornar os problemas causados pela malha de elementos finitos de transição entre as malhas da macro e da mesoescala, que, em geral, apresentam diferenças expressivas 5 de refinamento, utiliza-se uma técnica recente de acoplamento de malhas não conformes. Esta técnica é baseada na definição de elementos finitos de acoplamento (EFAs), os quais são capazes de estabelecer a continuidade de deslocamento entre malhas geradas de forma completamente independentes, sem aumentar a quantidade total de graus de liberdade do problema, podendo ser utilizados tanto para acoplar malhas não sobrepostas quanto sobrepostas. Para tornar possível a análise em multiescala em casos nos quais a região de localização de deformações não pode ser definida a priori, propõe-se uma técnica multiescala adaptativa. Nesta abordagem, usa-se a distribuição de tensões da escala macroscópica como um indicador para alterar a modelagem das regiões críticas, substituindo-se a macroescala pela mesoescala durante a análise. Consequentemente, a malha macroscópica é automaticamente substituída por uma malha mesoscópica, onde o comportamento não linear está na iminência de ocorrer. Testes numéricos são desenvolvidos para mostrar a capacidade do modelo proposto de representar o processo de iniciação e propagação de fissuras na região tracionada do concreto. Os resultados numéricos são comparados com os resultados experimentais ou com aqueles obtidos através da simulação direta em mesoescala (SDM). / A concurrent multiscale analysis of concrete is presented, in which two distinct scales are considered: the mesoscale, where the concrete is modeled as a heterogeneous material and the macroscale that treats the concrete as a homogeneous material. The mesostructure heterogeneities are idealized as three phase materials composed of the coarse aggregates, mortar matrix and the interfacial transition zone (ITZ). The coarse aggregates are generated from a grading curve and placed into the mortar matrix randomly. Their behavior is described using an elastic-linear constitutive model due to their significant higher strength when compared with the other two phases of the concrete. Special continuum finite elements with a high aspect ratio and a damage constitutive model are used to describe the nonlinear behavior associated to the propagation of cracks, which initiates in the ITZ and then propagates to the mortar matrix given place to a macro-crack formation. These interface elements with a high aspect ratio are inserted in between all regular finite elements of the mortar matrix and in between the mortar matrix and aggregate elements, representing the ITZ. In the limit case, when the thickness of interface elements tends to zero (h ?0) and consequently the aspect ratio tends to infinite, these elements present the same kinematics as the continuous strong discontinuity approach (CSDA), so that they are suitable to represent the formation of discontinuities associated to cracks, similar to cohesive models. A tensile damage model is proposed to model the nonlinear mechanical behavior of the interfaces, associated to the crack formation and also to the possible crack closure. To avoid transition meshes between the macro and the mesoscale meshes, a new technique for coupling non-matching meshes is used. This technique is based on the definition of coupling finite elements (CFEs), which can ensure the continuity of displacement between independent meshes, without increasing the total number of degrees of freedom of the problem. This technique can be used to couple non-overlapping and overlapping meshes.To make possible the concurrent multiscale analysis, where the strain localization region cannot be defined a priori, an adaptive multiscale model is proposed. In this approach the macroscale stress distribution is used as an indicator to properly change from the macroscale to the mesoscale modeling in the critical regions during the analysis. Consequently, the macroscopic mesh is automatically replaced by a mesoscopic mesh where the nonlinear behavior is imminent. A variety of tests are performed to show the ability of the proposed methodology in predicting the behavior of initiation and propagation of cracks in the tensile region of the concrete. The numerical results are compared with the experimental ones or with those obtained by the direct simulation in mesoscale (DSM).

Page generated in 0.0495 seconds