• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthodes level-set et de pénalisation pour l'optimisation et le contrôle d'écoulements / .

Chantalat, Frédéric 15 July 2009 (has links)
Ce travail est consacré à la résolution e?cace de problèmes d’optimisation de forme ou de contrôle d’écoulements. Le couplage entre la pénalisation, permettant d’imposer des conditions aux bords sur maillage cartésien, et la méthode Level-Set, autorisant une représentation d’obstacles non-paramétrique et un suivi d’interface précis, est implémenté. En première partie, un problème inverse modèle, puis une optimisation géométrique en régime de Stokes, sont traités itérativement. Une attention particulière est portée à la solution des EDP près des zones pénalisées, et une montée en ordre est réalisée. Divers préconditionnements du gradient de forme sont aussi discutés a?n d’améliorer la convergence. La seconde partie est dédiée à la simulation directe d’écoulements au voisinage d’un actionneur dans le cadre d’un contrôle par jets pulsés exercé sur le corps d’Ahmed. L’étude locale montre l'in?uence de paramètres comme la fréquence de pulsation ou l’allure des pro?ls de vitesse en sortie sur la qualité de l’action. En guise de synthèse, une optimisation de la forme de l’actionneur du chapitre deux est pratiquée sous contraintes topologiques et dans un cadre simpli?é, à l’aide du couplage Level-Set/pénalisation préalablement introduit. L’objectif du problème inverse posé est de modi?er la géométrie intérieure du MEMS pour obtenir un pro?l de vitesses désiré en sortie de jet. / This work deals with e?cient numerical solving of problems linked with shape optimization or ?ow control. The combination between penalization, that allows to impose boundary conditions while avoiding the use of body-?tted grids, and Level-Set methods, which enable a natural non-parametric representation of the geometries to be optimized, is implemented. In the ?rst part, a model inverse problem, and an application pertaining to optimal design in Stokes ?ows, are treated with an iterative algorithm. Special care is devoted to the solution of the PDE’s in the vicinity of the penalized regions. The discretization accuracy is increased. Various gradient preconditionings aiming at improving the convergence are also discussed. The second part is dedicated to direct numerical simulation of ?ows in the neighborhood of an actuator, in the context of active control by pulsed jets used on the Ahmed body. The local study emphasizes the in?uence of various parameters on the action quality, in particular the pulsation frequency, or the aspect of exit velocity pro?les. As a synthesis, shape optimization is performed on the actuator of chapter two, thanks to the previously introduced coupling between Level-Set and penalization. The framework is simpli?ed and topological constraints are imposed. The inverse problem we set intends to modify the MEMS inner geometry to retrieve a given jet pro?le on the exit section.
2

Contrôle bio-inspiré d’un sillage turbulent par stratégie passive ou auto-adaptative / Bio-inspired flow control of a turbulent wake by means of passive and self-adaptive strategies

Feuvrier, Audrey 17 September 2015 (has links)
Les décollements autour d’un corps en mouvement sont à l’origine de détériorations des performances aérodynamiques, de fatigues structurelles ou de nuisances sonores. La compréhension de ces phénomènes reste encore aujourd’hui l’un des enjeux majeurs de la recherche en aérodynamique. Le développement de systèmes permettant de contrôler l’écoulement et d’altérer ou de réduire les décollements apparaît comme une solution prometteuse en vue d’améliorer les performances aérodynamiques. On distingue les systèmes de contrôles passifs, simples d’utilisation mais incapables de s’adapter aux modifications de l’écoulement, des systèmes actifs qui disposent d’une grande adaptabilité mais nécessitent un apport extérieur d’énergie pour fonctionner. La stratégie du contrôle auto-adaptif s’apparente à un compromis entre ces deux méthodes. En s’inspirant de mécanismes présents dans la nature, elle permet d’associer amélioration des performances aérodynamiques, adaptabilité et autonomie. Ce travail de thèse porte sur l’étude expérimentale du contrôle du sillage turbulent d’un corps épais à l’aide d’actionneurs bio-inspirés avec un double objectif : i. déterminer les paramètres optimaux du dispositif de contrôle qui prend la forme d’un couple de volets flexibles, ii. Identifier les mécanismes physiques d’interactions entre l’actionnement et l’écoulement. Pour mener à bien cet objectif, de nombreux instruments de mesure complémentaires ont été mis en oeuvre. Une étude paramétrique a permis de démontrer l’efficacité du dispositif pour différentes configurations (fixes et auto-adaptatives) et d’identifier des configurations d’intérêt. La caractérisation de l’écoulement autour et dans le sillage du cylindre carré sans et avec contrôle a révélé un allongement de la longueur de recirculation à l’arrière du cylindre et la réduction de l’expansion du sillage. L’un des résultats majeurs de l’étude est que la réduction de traînée obtenue est principalement liée à une action du système sur l’anisotropie des fluctuations de l’écoulement et plus particulièrement sur l’entrainement du fluide dans le sillage de l’obstacle. / Flow separations around moving bodies lead to detrimental effects such as aerodynamic performances loss, structural fatigue and noises production. The understanding of these phenomena remains one of the most challenging issue of modern fluid dynamics. A promising solution to improve aerodynamic performances relies on the development of flow control devices able to prevent or mitigate the effects of separation. One can distinguish the passive flow control strategy, with easy to use devices but unable to adapt to the flow changes, from the active flow control strategy which benefits from a great adaptability but requires external power supply. Self-adaptive flow control appears to be a good compromise between those two strategies. Inspired from mechanisms at play in Nature, it combines good aerodynamic performances, self-adaptability and self-sustainability. This PhD thesis is dedicated to the experimental investigation of the turbulent flow over a bluff-body controlled by means of bio-inspired devices. The objective is two-folds : i. Design the control device which consists of a couple of compliant flaps, ii. Identify the physical mechanisms governing the interactions between the flow and the devices. A great number of complementary measurement techniques have been used in order to achieve these objectives. The efficiency of the devices for different configurations – locked and self-adaptive flaps - has been demonstrated through a parametric study. It has led to the identification of the main parameters involved in the control mechanism. The flow characterization around and in the wake of both uncontrolled and controlled cylinder revealed an increase in the length of the recirculation region and the reduction of the wake width. One of the major findings of this study is that the control essentially modifies the turbulent velocity field leading to a reduction of the lateral flow entrainment in the wake of the obstacle.

Page generated in 0.085 seconds