• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution à l'assistance robotisée du geste au travail : modélisation, analyse et assistance du geste / Contribution to robotic assistance of industrial tasks : Modeling, analysis and gesture assistance

Sylla, Nahéma 17 December 2014 (has links)
L'émergence Troubles Musculo-Squelettiques (TMS) en industrie constitue un véritable fléau ayant de lourdes conséquences socio-économique en France. Afin de réduire la pénibilité au travail et les risques TMS, les industriels s'engagent dans une politique de réaménagement des postes de travail par la mise en œuvre de moyens robotisés d'assistance aux opérateurs. Dans cette politique de prévention, le groupe PSA Peugeot Citroën aspire à utiliser des cobots et des exosquelettes comme dispositifs d'assistance pour améliorer les conditions de travail des opérateurs. Mais pour mettre en œuvre ces types de robot en usine, il est nécessaire de quantifier leurs apports ergonomiques. C'est dans ce contexte que s'inscrit cette thèse, dont l'objectif est de proposer une méthode d'évaluation de robots collaboratifs visant à être mis en œuvre dans les usines PSA Peugeot Citroën. Dans le cadre de ces travaux, nous avons utilisé l'exosquelette mono-bras droit ABLE, conçu par le CEA-LIST. A partir d'une analyse biomécanique d'une tâche de manipulation humaine, nous avons pu évaluer l'apport de l'exosquelette en termes de réduction de charge physique de l'utilisateur. Aussi avons-nous proposé dans ces travaux d'analyser les mécanismes neuromusculaires résultants du mouvement effectué en interaction avec l'exosquelette. Sur la base de la théorie du contrôle moteur humain et en utilisant une méthode d'optimisation inverse, les fonctions objectifs telles que jerk, le couple articulaire, ou l'énergie, caractérisant la tâche de manipulation humaine en termes d'efforts, de cinématique et de temps d'exécution, ont été identifiées. Cette meilleure compréhension du mouvement du membre supérieur humain a permis ensuite de revenir sur la conception de l'exosquelette afin de proposer une stratégie de commande optimisée à l'exécution de tâches de travail en environnement industriel. / The emergence of Musculo-Squelettal Disorders (MSD) in the industry is a real blight, having major socioeconomic consequences in France. In order to reduce work painfulness and MSD risks, some industries are committing to modifying workstations by assisting operators with robotic devices. Following this MSD prevention policy, PSA Peugeot Citroen aims to use cobots or exoskeletons as assistive devices to improve workers conditions. However, implementing this type of robot in factories requires quantifying their ergonomic benefit. In this context, the objective of this thesis is to develop a method to assess collaborative robot that are intended to be used in PSA Peugeot Citroen factories. In this framework, the right mono-arm ABLE exoskeleton, designed by the CEA-LIST has been used. With a biomechanical analysis of an industrial manipulation task, we have been able to assess the benefit of the exoskeleton in terms of physical load reduction. We also proposed in this work to assess neuromuscular mechanisms underlying the industrial task performed in interaction with the exoskeleton. On the basis of the human motor control theory and using an inverse optimisation method, objectives functions such as jerk, joint torque or energy that characterize the human manipulation task in terms of efforts, kinematics and execution time, have been identified. This improved understanding of human upper limb movements then allowed reviewing the exoskeleton design in order to propose an optimal command strategy adapted to the execution of industrial tasks.
2

Approche neuro-robotique pour le contrôle des systèmes anthropomorphiques

Tran, Minh Tuan 26 November 2009 (has links) (PDF)
Cette thèse présente une approche neuro-robotique du contrôle du mouvement d'atteinte pour des systèmes anthropomorphes tels que les robots humanoïdes. L'objectif de cette étude est double. D'une part, elle présente un état de l'art des modèles de commande existant en neurosciences du mouvement et décrit un ensemble de principes de contrôle moteur pouvant être utilisés pour la commande des robots humanoïdes. D'autre part, elle propose une utilisation de formalismes issus de la robotique pour la modélisation des processus de transformations sensori-moteurs nécessaires à l'exécution d'un mouvement volontaire. En particulier, il est mis en évidence que le formalisme de la commande référencée capteur et les modèles cinématiques et dynamiques des chaînes articulées, qui jouent un rôle essentiel pour la modélisation du problème de commande du mouvement en robotique, peuvent apporter des éléments clés pour répondre à des questions ouvertes en neurosciences. Sur le premier aspect du travail, nous avons développé une méthode de contrôle, basée sur un modèle d'optimisation du mouvement proposé en neurosciences, que nous avons ensuite appliquée à la commande des mouvements d'atteinte du robot HRP2. Les mouvements produits par cette méthode paraissent très ressemblants aux mouvements observés chez l'homme et présentent les caractéristiques principales des mouvements humains, à savoir : trajectoire quasirectiligne de la main avec profil de vitesse en forme de cloche. Nous avons également développé une autre méthode de contrôle inspirée de la théorie des primitives motrices en neurosciences. Cette méthode permet de simplifier la complexité du problème de commande en produisant rapidement des mouvements réalistes du robot à partir d'un ensemble de mouvements de référence. Ces différents résultats montrent que les théories du contrôle moteur humain peuvent être utilisées avec succès pour élaborer des méthodes de contrôle du mouvement d'atteinte des robots humanoïdes. Sur le deuxièm e aspect du travail, nous avons développé un modèle de coordination main-oeil pour tester et comparer des mouvements produits à partir d'un référentiel oculo-centré et d'un référentiel corps-centré. Ce modèle, qui repose sur des contrôleurs biologiquement inspirés de l'oeil et du bras, en boucle fermée sur les informations sensorielles, permet de commander simultanément le mouvement de la main vers la cible mobile et la direction du regard vers la cible. En comparant les trajectoires obtenues avec ce modèle en utilisant tour à tour le référentiel du corps et de l'oeil, nous montrons que les mouvements produits à partir du référentiel oculo-centré sont plus robustes par rapport aux erreurs de perception. Alors que la question de l'identification du référentiel utilisé par le cerveau pour le codage du mouvement fait l'objet d'un le débat controversé en neurosciences, ce résultat apporte des arguments de nature computationnelle en faveur d'un codage oculo-centré du mouvement d'atteinte visuellement guidé.
3

Modélisation du contrôle moteur humain lors de tâches rythmiques hybrides et application à la commande de robots anthropomorphes / Human motor control modeling during rhythmic hybrid task and application to anthropomorphic robot control

Avrin, Guillaume 04 October 2017 (has links)
La recherche portant sur l'identification des principes neurobiologiques qui sous-tendent le contrôle moteur humain est actuellement très active. Les mouvements humains ont en effet un niveau de robustesse et de dextérité encore inégalé dans la réalisation robotique de tâches complexes. L'objectif est donc de mieux comprendre l'origine de cette performance et de la reproduire en robotique bio-inspirée. Il a déjà été démontré que des réseaux spinaux rythmiques sont présents dans la moelle épinière des vertébrés. Ils constituent des systèmes dynamiques non-linéaires composés de neurones en inhibition réciproque et seraient à l’origine de la génération des mouvements rythmiques comme la locomotion et la respiration. Les attracteurs de ces systèmes dynamiques seraient modulés de manière continue ou intermittente par des signaux sensoriels et des signaux descendant du cortex moteur, de manière à adapter le comportement de l’agent à la dynamique de l’environnement.La présente étude émet l'hypothèse que des informations visuelles sont également couplées aux réseaux spinaux rythmiques et que ces couplages sont responsables des synchronisations temporelles et spatiales observées lors de la réalisation de tâches visuomotrices rythmiques. Cette proposition est confrontée à des résultats expérimentaux de frappe cyclique de balle, un benchmark bien connu des neuroscientifiques et des dynamiciens en raison de ses propriétés dynamiques intrinsèques. Il rend possible à la fois l’étude de la génération de mouvements rythmiques par des réseaux spinaux, la synchronisation temporelle avec l’environnement, la correction en-ligne des erreurs spatiales et l’interception de projectiles balistiques.Cette thèse propose ainsi un modèle comportemental mathématique innovant reposant sur un modèle d’oscillateur neuronal dont l’attracteur, qui définit les trajectoires de la raquette, est modulé en ligne par les perceptions visuelles de la trajectoire de la balle. La pertinence du modèle est validée par comparaison aux données expérimentales et aux modèles précédemment proposés dans la littérature. La robustesse de cette stratégie de contrôle est également quantifiée par une analyse de stabilité asymptotique du système hybride défini par le couplage entre le système neuro-musculo-squelettique et la balle. Le correcteur bio-inspiré proposé dans cette thèse réunit de manière harmonieuse un contrôle prospectif de la synchronisation balle-raquette, un contrôle paramétrique intermittent dimensionnant le mouvement et un contrôle émergeant du cycle-limite du système couplé. Il reproduit efficacement les modulations des actions motrices et les performances des humains durant la tâche de frappe cyclique de balle, y compris en présence de perturbations, et ce sans avoir recours à une planification du mouvement ou à des représentations internes explicites de l’environnement. Les résultats de cette étude conduisent à l’affirmation réaliste que les mouvements humains sont directement structurés par l’information sensorielle disponible et par des stratégies correctives en-ligne, en accord avec la théorie des dynamiques comportementales. Cette architecture de contrôle pourrait offrir de nombreux avantages aux robots humanoïdes qui en seraient munis, en assurant stabilité et économie d’énergie, par l’intermédiaire de lois de commande de faible complexité et peu gourmandes en ressources computationnelles. / The identification of the neurbiological principles underlying human motor control is a very active reseach topic. Indeed, human movement has a level of robustness and dexterity still unmatched by robots. The objective is therefore to better understand the origin of this efficiency to replicate these performances in robotics. It has been shown that spinal rhythm generators, known as Central Pattern Generators (CPG), are responsible for the generation of rhythmic movements such as locomotion and respiration in vertebrates. These CPG constitute dynamic nonlinear systems modulated by sensory signals and descending signals from the cortex to adapt the behavior to the changing environment.The present study hypothesizes that visual information is also coupled to the CPG and that these couplings are responsible for the temporal and spatial synchronization observed during rhythmic visuomotor tasks. This assumption is confronted with experimental results from human participants performing ball bouncing, a well-known benchmark in neuroscience and robotics for its intrinsic dynamic properties. This task allows for the investigation of rhythmic movement generation by spinal networks, the temporal synchronization with the environment, the on-line correction of spatial errors and the interception of ballistic projectiles.This thesis proposes an innovative mathematical behavioral model based on a neuronal oscillator whose attractor, which defines the paddle trajectories, is modulated on-line by the visual perception of the ball trajectory. The relevance of the model is validated by comparison with experimental data and models previously proposed in the literature. The robustness of this control strategy is quantified by an asymptotic stability analysis. The bio-inspired controller presented in this thesis harmoniously combines a prospective control of the ball-paddle synchronization, an intermittent parametric control that scales the movement and a control emerging from the coupled system limit cycle. It efficiently reproduces the human modulation in motor action and performance during ball bouncing, without relying on movement planning or explicit internal representation of the environment. The results of this study lead to the realistic assumption that much part of the human behavior during ball bouncing is directly structured by sensory information and on-line error correction processes, in agreement with the behavioral dynamics theory. This control architecture holds promise for the control of humanoid robots as it is able to ensure stability and energy saving through control laws of reduced complexity and computational cost.

Page generated in 0.0715 seconds