• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16475
  • 7943
  • 4522
  • 2647
  • 1668
  • 1651
  • 1396
  • 322
  • 317
  • 273
  • 267
  • 267
  • 267
  • 267
  • 267
  • Tagged with
  • 46164
  • 7051
  • 5580
  • 4818
  • 3027
  • 2989
  • 2870
  • 2455
  • 2219
  • 1951
  • 1883
  • 1870
  • 1862
  • 1789
  • 1716
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Development and evaluation of postural control models for lifting motions and balance control

Qu, Xingda 09 April 2008 (has links)
Accurately simulating human motions is a major function of and challenge to digital human models and integrating humans in computer-aided design systems. Numerous successful applications of human motion simulation have already demonstrated their ability to improve occupational efficiency, effectiveness, and safety. In this dissertation, a novel motion simulation model using fuzzy logic control is presented. This model was motivated by the fact that humans use linguistic terms to guide their behaviors while fuzzy logic provides mathematical representations of linguistic terms. Specifically in this model, fuzzy logic was used to specify a neural controller which was generally considered as the part in the postural control system that plans human motions. Fuzzy rules were generated according to certain trends observed from actual human motions. An optimization procedure was performed to specify the parameters of the membership functions by minimizing the differences between the simulated and actual final postures. This research contributed to the field of human movement science by providing a motion simulation model that can accurately predict novel human motions and provide interpretations of potential human motion planning strategies. Understanding balance control is another research focus in this dissertation. Investigating balance control may aid in preventing unnecessary fall-related incidents and understanding the postural control system. Since human behaviors are generally effective and efficient, balance control models (both two- and three-dimensional) based on an optimal control strategy were developed to aid in better understanding balance control. Specifically, the neural controller was considered as an optimal controller that minimizes a performance index defined by physical quantities relevant to sway. Free model parameters, such as weights of relevant physical quantities and sensory delay time, were determined by an optimization procedure whose objective was to minimize a scalar error between simulated and experimental center-of-pressure (COP) based measures. Many factors, such as aging, localized muscle fatigue, and external loads, have been found to adversely affect balance control. At the same time, behaviors during upright stance are commonly characterized by COP-based measures. Thus, changes in COP based measures with aging, LMF, and external loads were addressed by using the proposed models, and possible postural control mechanisms were identified by interpreting these changes. Findings from these studies demonstrated that the proposed models were able to accurately simulate human sway behaviors and provide plausible mechanisms regarding how the postural control system works when maintaining upright balance. / Ph. D.
382

A Learning Control, Intervention Strategy for Location-Aware Adaptive Vehicle Dynamics Systems

Cho, Sukhwan 03 August 2015 (has links)
The focus of Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) research is to develop a system to avoid situations in which the vehicle exceeds its handling capabilities. The proposed method is predictive, estimating the ability of the vehicle to successfully navigate upcoming terrain, and it is assumed that the future vehicle states and local driving environment is known. An Intervention Strategy must be developed such that the vehicle is navigated successfully along a road via modest changes to the driver's commands and do so in a manner that is in harmony with the driver's intentions and not in a distracting or irritating manner. Clearly this research relies on the numerous new technologies being developed to capture and convey information about the local driving environment (e.g., bank angle, elevation changes, curvature, and friction coefficient) to the vehicle and driver. / Ph. D.
383

Model Predictive Adaptive Cruise Control with Consideration of Comfort and Energy Savings

Ryan, Timothy Patrick 09 June 2021 (has links)
The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is partaking in the 4-Year EcoCar Mobility Challenge organized by Argonne National Labs. The objective of this competition is to modify a stock 2019 traditional internal combustion engine Chevrolet Blazer and to transform the vehicle into a P4 hybrid. Due to the P4 Hybrid architecture, the HEVT vehicle has an internal combustion engine on the front axle and an electric motor on the rear axle. The goal of this competition is to create a vehicle that achieves better fuel economy and increases customer appeal. The general target market of hybrids is smaller vehicles. As a midsize sport utility vehicle (SUV), the Blazer offers a larger vehicle with the perk of better fuel economy. In the competition, the vehicle is assessed on the ability to integrate advanced vehicle technology, improve consumer appeal, and provide comfort for the passenger. The research of this paper is centered around the design of a full range longitudinal Adaptive Cruise Control (ACC) algorithm. Initially, research is conducted on various linear and nonlinear control strategies that provide the necessary functionality. Based on the ability to predict future time instances in an optimal method, the Model Predictive Control (MPC) algorithm is chosen and combined with other standard control strategies to create an ACC system. The main objective of this research is the implementation of Adaptive Cruise Control features that provide comfort and energy savings to the rider while maintaining safety as the priority. Rider comfort is achieved by placing constraints on acceleration and jerk. Lastly, a proper energy analysis is conducted to showcase the potential energy savings with the implementation of the Adaptive Cruise Control system. This implementation includes tuning the algorithm so that the best energy consumption at the wheel is achieved without compromising vehicle safety. The scope of this paper expands on current knowledge of Adaptive Cruise Control by using a simplified nonlinear vehicle system model in MATLAB to simulate different conditions. For each condition, comfort and energy consumption are analyzed. The city 505 simulation of a traditional ACC system show a 14% or 42 Wh/mi reduction in energy at the wheel. The city 505 simulation of the environmentally friendly ACC system show a 29% or 88 Wh/mi reduction in energy at the wheel. Furthermore, these simulations confirm that maximum acceleration and jerk are bounded. Specifically, peak jerk is reduced by 90% or 8 m/s3 during a jerky US06 drive cycle. The main objective of this analysis is to demonstrate that with proper implementation, this ACC system effectively reduces tractive energy consumption while improving rider comfort for any vehicle. / Master of Science / The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is partaking in the 4-Year EcoCar Mobility Challenge organized by Argonne National Labs. The objective of this competition is to modify a stock 2019 Chevrolet Blazer into a hybrid. This modification is accomplished by creating a vehicle that burns less gasoline and increases customer appeal. The general target market of hybrids is smaller vehicles. As a midsize sport utility vehicle (SUV), the Blazer offers a larger vehicle with the perk of better fuel economy. In the competition, the vehicle is assessed on the ability to integrate advanced technology, improve consumer appeal, and provide comfort for the passenger. The research of this paper is centered around the design of Adaptive Cruise Control (ACC). Initially, research is conducted on various control strategies that provide the necessary functionality. A controller that predicts future events is selected for the Adaptive Cruise Control. The main objective of this research is the implementation of Adaptive Cruise Control features that provide comfort and energy consumption savings to the rider while maintaining safety as the priority. Rider comfort is achieved by creating a smoother ride. Lastly, a proper energy analysis showcases the potential energy savings with the implementation of the Adaptive Cruise Control system. The scope of this paper expands on current knowledge of Adaptive Cruise Control by using a simplified vehicle model to simulate different conditions. The city simulations of a traditional ACC system show a 14% reduction in energy at the wheel. City simulations of the environmentally friendly Adaptive Cruise Controller show a 29% reduction in energy. Both of these simulations allow for comfortable ride. Specifically, maximum car jerk is reduced by 90%. The main objective of this analysis is to demonstrate that with proper implementation, this ACC system effectively reduces energy consumption at the wheel while improving rider comfort.
384

Caracterización y optimización de los gráficos X-RL2 para el control de la posición y S-RL2 para el control de la dispersión

Campos Avendaño, Gustavo Andrés 09 July 2012 (has links)
En el entorno productivo y de manufactura, el control estadístico de procesos (SPC) es una herramienta ampliamente utilizada para mantener la calidad del producto fabricado. Dentro del SPC, los gráficos de control han sido objeto de innumerables investigaciones, todas ellas encaminadas a aumentar el desempeño de los mismos. Esto es debido a que los clásicos gráficos de control X� de Shewhart y S de Shewhart, aunque de uso muy extendido, presentan la desventaja de su poca efectividad para detectar cambios pequeños o moderados en la media y en la desviación del proceso respectivamente. Para intentar mitigar dicha dificultad, diferentes autores han planteado numerosas alternativas a los mencionados gráficos de control. Entre las más destacadas se encuentran los gráficos con reglas adicionales, gráficos EWMA, gráficos CUSUM, gráficos con tamaño de muestra e intervalo de muestreo variable, gráficos sintéticos, etc. En la presente tesis doctoral se estudian, caracterizan y optimizan dos nuevos gráficos de control. El primero es el gráfico de control denominado X� -RL2 que combina un gráfico de control X� de Shewhart con un gráfico RL2. El segundo es el gráfico de control S-RL2 que combina el gráfico S de Shewhart con un gráfico RL2. Con los nuevos gráficos desarrollados se mejora el desempeño de los clásicos gráficos X� y S propuestos por el doctor Walter Shewhart para ciertos tamaños de muestra y magnitudes de cambio de diseño establecidos. De igual manera, tanto el gráfico de control X� -RL2 como el S-RL2 presentan un desempeño superior a los gráficos sintéticos para ciertos parámetros de diseño. Adicionalmente, el desempeño de los gráficos de control X� -RL2 es comparado con la de los gráficos con reglas adicionales, gráficos CUSUM y EWMA. Igualmente, el desempeño del gráfico S-RL2 es comparado con la de los gráficos CUSUM S y EWMA S, con resultados ventajosos en algunos casos. Todas las comparaciones se realizaron en el escenario zero-state usando la métrica del ARL / Campos Avendaño, GA. (2012). Caracterización y optimización de los gráficos X-RL2 para el control de la posición y S-RL2 para el control de la dispersión [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16467
385

Robust Control For Gantry Cranes

Costa, Giuseppe, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 1999 (has links)
In this thesis a class of robust non-linear controllers for a gantry crane system are discussed. The gantry crane has three degrees of freedom, all of which are interrelated. These are the horizontal traverse of the cart, the vertical motion of the goods (i.e. rope length) and the swing angle made by the goods during the movement of the cart. The objective is to control all three degrees of freedom. This means achieving setpoint control for the cart and the rope length and cancellation of the swing oscillations. A mathematical model of the gantry crane system is developed using Lagrangian dynamics. In this thesis it is shown that a model of the gantry crane system can be represented as two sub models which are coupled by a term which includes the rope length as a parameter. The first system will consist of the cart and swing dynamics and the other system is the hoist dynamics. The mathematical model of these two systems will be derived independent of the other system. The model that is comprised of the two sub models is verified as an accurate model of a gantry crane system and it will be used to simulate the performance of the controllers using Matlab. For completeness a fully coupled mathematical model of the gantry crane system is also developed. A detailed design of a gain scheduled sliding mode controller is presented. This will guarantee the controller's robustness in the presence of uncertainties and bounded matched disturbances. This controller is developed to achieve cart setpoint and swing control while achieving rope length setpoint control. A non gain scheduled sliding mode controller is also developed to determine if the more complex gain scheduled sliding mode controller gives any significant improvement in performance. In the implementation of both sliding mode controllers, all system states must be available. In the real-time gantry crane system used in this thesis, the cart velocity and the swing angle velocity are not directly available from the system. They will be estimated using an alpha-beta state estimator. To overcome this limitation and provide a more practical solution an optimal output feedback model following controller is designed. It is demonstrated that by expressing the system and the model for which the system is to follow in a non-minimal state space representation, LQR techniques can be used to design the controller. This produces a dynamic controller that has a proper transfer function, and negates the need for the availability of all system states. This thesis presents an alternative method of solving the LQR problem by using a generic eigenvalue solution to solve the Riccati equation and thus determine the optimal feedback gains. In this thesis it is shown that by using a combination of sliding mode and H??? control techniques, a non-linear controller is achieved which is robust in the presence of a wide variety of uncertainties and disturbances. A supervisory controller is also described in this thesis. The supervisory control is made up of a feedforward and a feedback component. It is shown that the feedforward component is the crane operator's action, and the feedback component is a sliding mode controller which compensates as the system's output deviates from the desired trajectory because of the operator's inappropriate actions or external disturbances such as wind gusts and noise. All controllers are simulated using Matlab and implemented in real-time on a scale model of the gantry crane system using the program RTShell. The real-time results are compared against simulated results to determine the controller's performance in a real-time environment.
386

Control strategies for exothermic batch and fed-batch processes : a sub-optimal strategy is developed which combines fast response with a chosen control signal safety margin : design procedures are described and results compared with conventional control

Kaymaz, I. Ali January 1989 (has links)
There is a considerable scope for improving the temperature control of exothermic processes. In this thesis, a sub-optimal control strategy is developed through utilizing the dynamic, simulation tool. This scheme is built around easily obtained knowledge of the system and still retains flexibility. It can be applied to both exothermic batch and fed-batch processes. It consists of servo and regulatory modes, where a Generalized Predictive Controller (GPC) was used to provide self-tuning facilities. The methods outlined allow for limited thermal runaway whilst keeping some spare cooling capacity to ensure that operation at constraints are not violated. A special feature of the method proposed is that switching temperatures and temperature profiles can be readily found from plant trials whilst the addition rate profile Is capable of fairly straightforward computation. The work shows that It is unnecessary to demand stability for the whole of the exothermic reaction cycle, permitting a small runaway has resulted in a fast temperature response within the given safety margin. The Idea was employed for an exothermic single Irreversible reaction and also to a set of complex reactions. Both are carried out in a vessel with a heating/cooling coil. Two constraints are Imposed; (1) limited heat transfer area, and (11) a maximum allowable reaction temperature Tmax. The non-minimum phase problem can be considered as one of the difficulties in managing exothermic fed-batch process when cold reactant Is added to vessel at the maximum operating temperature. The control system coped with this within limits, a not unexpected result. In all cases, the new strategy out-performed the conventional controller and produced smoother variations in the manipulated variable. The simulation results showed that batch to batch variations and disturbances In cooling were successfully handled. GPC worked well but can be susceptible to measurement noise.
387

Robust Control For Gantry Cranes

Costa, Giuseppe, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 1999 (has links)
In this thesis a class of robust non-linear controllers for a gantry crane system are discussed. The gantry crane has three degrees of freedom, all of which are interrelated. These are the horizontal traverse of the cart, the vertical motion of the goods (i.e. rope length) and the swing angle made by the goods during the movement of the cart. The objective is to control all three degrees of freedom. This means achieving setpoint control for the cart and the rope length and cancellation of the swing oscillations. A mathematical model of the gantry crane system is developed using Lagrangian dynamics. In this thesis it is shown that a model of the gantry crane system can be represented as two sub models which are coupled by a term which includes the rope length as a parameter. The first system will consist of the cart and swing dynamics and the other system is the hoist dynamics. The mathematical model of these two systems will be derived independent of the other system. The model that is comprised of the two sub models is verified as an accurate model of a gantry crane system and it will be used to simulate the performance of the controllers using Matlab. For completeness a fully coupled mathematical model of the gantry crane system is also developed. A detailed design of a gain scheduled sliding mode controller is presented. This will guarantee the controller's robustness in the presence of uncertainties and bounded matched disturbances. This controller is developed to achieve cart setpoint and swing control while achieving rope length setpoint control. A non gain scheduled sliding mode controller is also developed to determine if the more complex gain scheduled sliding mode controller gives any significant improvement in performance. In the implementation of both sliding mode controllers, all system states must be available. In the real-time gantry crane system used in this thesis, the cart velocity and the swing angle velocity are not directly available from the system. They will be estimated using an alpha-beta state estimator. To overcome this limitation and provide a more practical solution an optimal output feedback model following controller is designed. It is demonstrated that by expressing the system and the model for which the system is to follow in a non-minimal state space representation, LQR techniques can be used to design the controller. This produces a dynamic controller that has a proper transfer function, and negates the need for the availability of all system states. This thesis presents an alternative method of solving the LQR problem by using a generic eigenvalue solution to solve the Riccati equation and thus determine the optimal feedback gains. In this thesis it is shown that by using a combination of sliding mode and H??? control techniques, a non-linear controller is achieved which is robust in the presence of a wide variety of uncertainties and disturbances. A supervisory controller is also described in this thesis. The supervisory control is made up of a feedforward and a feedback component. It is shown that the feedforward component is the crane operator's action, and the feedback component is a sliding mode controller which compensates as the system's output deviates from the desired trajectory because of the operator's inappropriate actions or external disturbances such as wind gusts and noise. All controllers are simulated using Matlab and implemented in real-time on a scale model of the gantry crane system using the program RTShell. The real-time results are compared against simulated results to determine the controller's performance in a real-time environment.
388

Strategies in robust and stochastic model predictive control

Munoz Carpintero, Diego Alejandro January 2014 (has links)
The presence of uncertainty in model predictive control (MPC) has been accounted for using two types of approaches: robust MPC (RMPC) and stochastic MPC (SMPC). Ideal RMPC and SMPC formulations consider closed-loop optimal control problems whose exact solution, via dynamic programming, is intractable for most systems. Much effort then has been devoted to find good compromises between the degree of optimality and computational tractability. This thesis expands on this effort and presents robust and stochastic MPC strategies with reduced online computational requirements where the conservativeness incurred is made as small as conveniently possible. Two RMPC strategies are proposed for linear systems under additive uncertainty. They are based on a recently proposed approach which uses a triangular prediction structure and a non-linear control policy. One strategy considers a transference of part of the computation of the control policy to an offline stage. The other strategy considers a modification of the prediction structure so that it has a striped structure and the disturbance compensation extends throughout an infinite horizon. An RMPC strategy for linear systems with additive and multiplicative uncertainty is also presented. It considers polytopic dynamics that are designed so as to maximize the volume of an invariant ellipsoid, and are used in a dual-mode prediction scheme where constraint satisfaction is ensured by an approach based on a variation of Farkas' Lemma. Finally, two SMPC strategies for linear systems with additive uncertainty are presented, which use an affine-in-the-disturbances control policy with a striped structure. One strategy considers an offline sequential design of the gains of the control policy, while these are variables in the online optimization in the other. Control theoretic properties, such as recursive feasibility and stability, are studied for all the proposed strategies. Numerical comparisons show that the proposed algorithms can provide a convenient compromise in terms of computational demands and control authority.
389

Control strategies for exothermic batch and fed-batch processes A sub-optimal strategy is developed which combines fast response with a chosen control signal safety margin. Design procedures are described and results compared with conventional control.

Kaymaz, I. Ali January 1989 (has links)
There is a considerable scope for improving the temperature control of exothermic processes. In this thesis, a sub-optimal control strategy is developed through utilizing the dynamic, simulation tool. This scheme is built around easily obtained knowledge of the system and still retains flexibility. It can be applied to both exothermic batch and fed-batch processes. It consists of servo and regulatory modes, where a Generalized Predictive Controller (GPC) was used to provide self-tuning facilities. The methods outlined allow for limited thermal runaway whilst keeping some spare cooling capacity to ensure that operation at constraints are not violated. A special feature of the method proposed is that switching temperatures and temperature profiles can be readily found from plant trials whilst the addition rate profile Is capable of fairly straightforward computation. The work shows that It is unnecessary to demand stability for the whole of the exothermic reaction cycle, permitting a small runaway has resulted in a fast temperature response within the given safety margin. The Idea was employed for an exothermic single Irreversible reaction and also to a set of complex reactions. Both are carried out in a vessel with a heating/cooling coil. Two constraints are Imposed; (1) limited heat transfer area, and (11) a maximum allowable reaction temperature Tmax. The non-minimum phase problem can be considered as one of the difficulties in managing exothermic fed-batch process when cold reactant Is added to vessel at the maximum operating temperature. The control system coped with this within limits, a not unexpected result. In all cases, the new strategy out-performed the conventional controller and produced smoother variations in the manipulated variable. The simulation results showed that batch to batch variations and disturbances In cooling were successfully handled. GPC worked well but can be susceptible to measurement noise. / Higher Education Ministry and Scientific Research
390

A nonlinear controller for underdamped systems

Webb, Joseph C. January 1962 (has links)
Call number: LD2668 .T4 1962 W36

Page generated in 0.069 seconds