• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wireless medium access control protocols for real-time industrial applications

Kutlu, Akif January 1997 (has links)
Wireless Communication is the only solution for data transfer between mobile terminals to access the sensors and actuators in industrial environment Control Area Network (CAN) is desirable solution for many industrial applications since it meets the requirements of real-time transfer of messages between systems. In situations where the use of a cable is not feasible it is important and necessary to design wireless medium access control protocols for CAN to provide real-time communications. This thesis deals with modelling, simulation and performance analysis of wireless medium access control protocols for CAN. The main issue in this concept is to determine prioritisation of the messages in the wireless environment. In order to accomplish this, a Wireless Medium Access Control protocol called WMAC is first proposed for distributed environment. The prioritisation in the WMAC protocol is achieved by performing an operation of timing the interframe gap. In this method, every message within the network is assigned a unique time period before the transmission of the message. These individual time periods distinguish messages from each other and provides message priority. Second access method called Remote Frame Medium Access Control (RFMAC) protocol is proposed for centralised wireless environment. Since the central node organises the message traffic the prioritisation is accomplished automatically by the central node. Both protocols are evaluated by using simulation techniques. The third access method called Comb is designed by using an additional overhead which consist of binary sequence. The prioritisation in this access method is managed by the overhead. Additionally, the interconnection of wireless nodes is investigated. The results of the simulations and performance analysis show that the proposed protocols operating in the centralised and distributed environments are capable of supporting the prioritisation of the messages required for real-time industrial applications in a wireless environment.

Page generated in 0.1113 seconds