Spelling suggestions: "subject:"control off chaos"" "subject:"control off khaos""
1 |
Dynamics and Synchronization of Electromechanical Devices with a Duffing LinearityYAMAPi, René 05 November 2003 (has links) (PDF)
Pour une exploitation technologique possible en ingénierie électromécanique, nous considérons dans cette thèse l'étude dynamique et la synchronisation des dispositifs électromécaniques non-linéaires décrits par le système couplé constitué de l'oscillateur électrique de Duffing couplé magnétiquement et paramètriquement aux oscillateurs mécaniques linéaires en série et en parallèle. L'intérêt porté sur ces dispositifs électromécaniques revêt un caractère technologique indéniable, dû à sa présence dans plusieurs branches de l'ingénierie électromécanique. Nous étudions le comportement de ces dispositifs à travers les études analytique et numérique, et montrons que les phénomènes non-linéaires tels que: les phénomènes de résonances, d'anti-résonances, d'hystérésis et de multi-stabilité, les oscillations sous et super harmoniques, et le chaos peuvent être utilisé pour améliorer les perfectionnements à des taches industrielles. Le problème de synchronisation des états régulier et chaotique de ces dispositifs est aussi d'un grand intérêt pour des applications en ingénierie électromécanique.
|
2 |
Interação onda-partícula: Ressonâncias, aceleração regular e controle do caos / Wave-particle interaction: Resonances, regular acceleration and control of chaosSousa, Meirielen Caetano de 31 July 2015 (has links)
Nesta tese é analisada a dinâmica de uma partícula relativística se movendo sob a influência de um campo magnético uniforme e uma onda eletrostática e estacionária dada na forma de pulsos periódicos. O mapa que descreve a evolução temporal do sistema é explícito e pode ser considerado como uma versão relativística e magnetizada do mapa padrão clássico. A posição aproximada dos pontos periódicos é calculada analiticamente e com essa informação é possível estudar as ressonâncias primárias. Para o sistema em estudo, observa-se que a maior parte das ressonâncias possui mais de uma cadeia de ilhas. Isso ocorre pois o sistema apresenta um número infinito de termos ressonantes com o mesmo número de rotação e que podem gerar ilhas na mesma posição do espaço de fases. Verifica-se que essa superposição de termos ressonantes faz com que o número de cadeias varie em função dos parâmetros da onda. Para valores de período ou número de onda suficientemente elevados, todas as ressonâncias primárias apresentam duas ou mais cadeias de ilhas no espaço de fases. As ilhas de ressonância primária são utilizadas nesta tese para acelerar partículas de forma regular. Em particular, considera-se a ressonância principal do sistema, para a qual a energia inicial da partícula pode estar muito próxima de sua energia de repouso se os parâmetros da onda forem adequados. Além disso, aplica-se um método de controle do caos para Hamiltonianas quase integráveis que consiste na adição de um termo de controle simples e com baixa amplitude ao sistema. Esse termo de controle cria toros invariantes em todo o espaço de fases que confinam as trajetórias caóticas em pequenas regiões, tornando a dinâmica controlada mais regular. Verifica-se numericamente que o termo de controle reduz drasticamente as regiões caóticas. Além disso, observa-se que o controle do caos e a consequente recuperação de trajetórias periódicas e quase periódicas no espaço de fases podem ser utilizados para melhorar o processo de aceleração regular de partículas. / In this thesis, we analyze the dynamics of a relativistic particle moving under the influence of a uniform magnetic field and a stationary electrostatic wave given as a series of periodic pulses. The map that describes the time evolution of the system is explicit, and it can be considered as a magnetized relativistic version of the classical standard map. We calculate analytically the approximate position of the periodic points and we use this information to study the primary resonances. For the system under study, we observe that most of its resonances exhibit more than one island chain. It occurs because the system presents an infinite number of resonant terms with the same winding number that may generate islands in the same position of phase space. We verify that this superposition of resonant terms makes the number of chains vary as a function of the parameters of the wave. For sufficiently large values of the wave period or wave number, all the primary resonances present two or more island chains in phase space. We use the islands of primary resonances in this thesis to regularly accelerate particles. In particular, we consider the main resonance of the system, for which the initial energy of the particle can be very close to its rest energy if the parameters of the wave are adequate. Furthermore, we apply a method of control of chaos for near-integrable Hamiltonians that consists in the addition of a simple control term with low amplitude to the system. This control term creates invariant tori in the whole phase space that confine the chaotic trajectories to small regions, making the controlled dynamics more regular. We verify numerically that the control term drastically reduces the chaotic regions. Moreover, we observe that the control of chaos and the consequent recovery of periodic and quasiperiodic trajectories in phase space can be used to improve the process of regular particle acceleration.
|
3 |
Interação onda-partícula: Ressonâncias, aceleração regular e controle do caos / Wave-particle interaction: Resonances, regular acceleration and control of chaosMeirielen Caetano de Sousa 31 July 2015 (has links)
Nesta tese é analisada a dinâmica de uma partícula relativística se movendo sob a influência de um campo magnético uniforme e uma onda eletrostática e estacionária dada na forma de pulsos periódicos. O mapa que descreve a evolução temporal do sistema é explícito e pode ser considerado como uma versão relativística e magnetizada do mapa padrão clássico. A posição aproximada dos pontos periódicos é calculada analiticamente e com essa informação é possível estudar as ressonâncias primárias. Para o sistema em estudo, observa-se que a maior parte das ressonâncias possui mais de uma cadeia de ilhas. Isso ocorre pois o sistema apresenta um número infinito de termos ressonantes com o mesmo número de rotação e que podem gerar ilhas na mesma posição do espaço de fases. Verifica-se que essa superposição de termos ressonantes faz com que o número de cadeias varie em função dos parâmetros da onda. Para valores de período ou número de onda suficientemente elevados, todas as ressonâncias primárias apresentam duas ou mais cadeias de ilhas no espaço de fases. As ilhas de ressonância primária são utilizadas nesta tese para acelerar partículas de forma regular. Em particular, considera-se a ressonância principal do sistema, para a qual a energia inicial da partícula pode estar muito próxima de sua energia de repouso se os parâmetros da onda forem adequados. Além disso, aplica-se um método de controle do caos para Hamiltonianas quase integráveis que consiste na adição de um termo de controle simples e com baixa amplitude ao sistema. Esse termo de controle cria toros invariantes em todo o espaço de fases que confinam as trajetórias caóticas em pequenas regiões, tornando a dinâmica controlada mais regular. Verifica-se numericamente que o termo de controle reduz drasticamente as regiões caóticas. Além disso, observa-se que o controle do caos e a consequente recuperação de trajetórias periódicas e quase periódicas no espaço de fases podem ser utilizados para melhorar o processo de aceleração regular de partículas. / In this thesis, we analyze the dynamics of a relativistic particle moving under the influence of a uniform magnetic field and a stationary electrostatic wave given as a series of periodic pulses. The map that describes the time evolution of the system is explicit, and it can be considered as a magnetized relativistic version of the classical standard map. We calculate analytically the approximate position of the periodic points and we use this information to study the primary resonances. For the system under study, we observe that most of its resonances exhibit more than one island chain. It occurs because the system presents an infinite number of resonant terms with the same winding number that may generate islands in the same position of phase space. We verify that this superposition of resonant terms makes the number of chains vary as a function of the parameters of the wave. For sufficiently large values of the wave period or wave number, all the primary resonances present two or more island chains in phase space. We use the islands of primary resonances in this thesis to regularly accelerate particles. In particular, we consider the main resonance of the system, for which the initial energy of the particle can be very close to its rest energy if the parameters of the wave are adequate. Furthermore, we apply a method of control of chaos for near-integrable Hamiltonians that consists in the addition of a simple control term with low amplitude to the system. This control term creates invariant tori in the whole phase space that confine the chaotic trajectories to small regions, making the controlled dynamics more regular. We verify numerically that the control term drastically reduces the chaotic regions. Moreover, we observe that the control of chaos and the consequent recovery of periodic and quasiperiodic trajectories in phase space can be used to improve the process of regular particle acceleration.
|
4 |
Probabilistic Robustness Analysis with Aerospace ApplicationsEvangelisti, Luca Luciano 20 November 2023 (has links)
This thesis develops theoretical and computational methods for the robustness analysis of uncertain systems. The considered systems are linearized and depend rationally on random parameters with an associated probability distribution. The uncertainty is tackled by applying a polynomial chaos expansion (PCE), a series expansion for random variables similar to the well-known Fourier series for periodic time signals. We consider the linear perturbations around a system's operating point, i.e., reference trajectory, both from a probabilistic and worst-case point of view.
A chief contribution is the polynomial chaos series expansion of uncertain linear systems in linear fractional representation (LFR). This leads to significant computational benefits when analyzing the probabilistic perturbations around a system's reference trajectory. The series expansion of uncertain interconnections in LFR further delivers important theoretical insights. For instance, it is shown that the PCE of rational parameter-dependent linear systems in LFR is equivalent to applying Gaussian quadrature for numerical integration.
We further approximate the worst-case performance of uncertain linear systems with respect to quadratic performance metrics. This is achieved by approximately solving the underlying parametric Riccati differential equation after applying a polynomial chaos series expansion.
The utility of the proposed probabilistic robustness analysis is demonstrated on the example of an industry-sized autolanding system for an Airbus A330 aircraft. Mean and standard deviation of the stochastic perturbations are quantified efficiently by applying a PCE to a linearization of the system along the nominal approach trajectory. Random uncertainty in the aerodynamic coefficients and mass parameters are considered, as well as atmospheric turbulence and static wind shear. The approximate worst-case analysis is compared with Monte Carlo simulations of the complete nonlinear model. The methods proposed throughout the thesis rapidly provide analysis results in good agreement with the Monte Carlo benchmark, at reduced computational cost.
|
5 |
Stabilization of periodic orbits in discrete and continuous-time systemsPerreira Das Chagas, Thiago 25 June 2013 (has links) (PDF)
The main problem evaluated in this manuscript is the stabilization of periodic orbits of non-linear dynamical systems by use of feedback control. The goal of the control methods proposed in this work is to achieve a stable periodic oscillation. These control methods are applied to systems that present unstable periodic orbits in the state space, and the latter are the orbits to be stabilized.The methods proposed here are such that the resulting stable oscillation is obtained with low control effort, and the control signal is designed to converge to zero when the trajectory tends to the stabilized orbit. Local stability of the periodic orbits is analyzed by studying the stability of some linear time-periodic systems, using the Floquet stability theory. These linear systems are obtained by linearizing the trajectories in the vicinity of the periodic orbits.The control methods used for stabilization of periodic orbits here are the proportional feedback control, the delayed feedback control and the prediction-based feedback control. These methods are applied to discrete and continuous-time systems with the necessary modifications. The main contributions of the thesis are related to these methods, proposing an alternative control gain design, a new control law and related results.
|
6 |
Stabilization of periodic orbits in discrete and continuous-time systems / Stabilisation d'orbites périodiques pour des systèmes en temps discret et en temps continuPerreira Das Chagas, Thiago 25 June 2013 (has links)
Le problème principalement étudié dans ce manuscrit est la stabilisation d’orbites périodiques de systèmes dynamiques non linéaires à l’aide d’une commande de rétroaction (feedback). Le but des méthodes de contrôle proposées ici est d’obtenir une oscillation périodique stable. Ces méthodes de contrôle sont appliquées à des systèmes présentant des orbites périodiques instables dans l’espace d’état, et ces dernières sont les orbites destinées à être stabilisées.Les méthodes proposées ici sont telles que l’oscillation stable qui en résulte est obtenue avec un effort de contrôle faible, et que la valeur de la commande tend vers zéro lorsque la trajectoire tend vers l’orbite stabilisée. La stabilité locale des orbites périodiques est analysée par l’étude de la stabilité des systèmes linéaires périodiques à l’aide de la théorie de Floquet. Ces systèmes linéaires sont obtenus par linéarisation des trajectoires au voisinage de l’orbite périodique.Les méthodes de contrôle utilisées ici pour la stabilisation des orbites périodiques sont une loi de commande proportionnelle, une loi de commande de rétroaction retardée et une loi de commande de rétroaction basée sur une prédiction. Ces méthodes sont appliquées aux systèmes en temps discret et aux systèmes en temps continu avec les modifications nécessaires. Les contributions principales de cette thèse sont associées à ces méthodes, proposant une méthode alternative de design de gain, une nouvelle loi de commande et des résultats associés. / The main problem evaluated in this manuscript is the stabilization of periodic orbits of non-linear dynamical systems by use of feedback control. The goal of the control methods proposed in this work is to achieve a stable periodic oscillation. These control methods are applied to systems that present unstable periodic orbits in the state space, and the latter are the orbits to be stabilized.The methods proposed here are such that the resulting stable oscillation is obtained with low control effort, and the control signal is designed to converge to zero when the trajectory tends to the stabilized orbit. Local stability of the periodic orbits is analyzed by studying the stability of some linear time-periodic systems, using the Floquet stability theory. These linear systems are obtained by linearizing the trajectories in the vicinity of the periodic orbits.The control methods used for stabilization of periodic orbits here are the proportional feedback control, the delayed feedback control and the prediction-based feedback control. These methods are applied to discrete and continuous-time systems with the necessary modifications. The main contributions of the thesis are related to these methods, proposing an alternative control gain design, a new control law and related results. / O principal problema avaliado neste manuscrito é a estabilização de órbitas periódicas em sistemas dinâmicos não-lineares utilizando controle por realimentação. O objetivo dos métodos de controle propostos neste trabalho é obter uma oscilação periódica estável. Estes métodos de controle são aplicados a sistemas que apresentam órbitas periódicas instáveis no espaço de estados, estas são as órbitas a serem estabilizadas.Os métodos propostos aqui são tais que a oscilação periódica estável resultante é obtida utilizando um baixo esforço de controle, e o sinal de controle é projetado de forma a convergir para zero quanto a trajetória tende à órbita estabilizada. A estabilidade local de órbitas periódicas é analisada através do estudo da estabilidade de alguns sistemas lineares periódicos no tempo, utilizando a teoria de estabilidade de Floquet. Estes sistemas lineares são obtidos por linearização das trajetórias na vizinhança da órbita periódica.Os métodos de controle utilizados aqui para estabilização de órbitas periódicas são o proportional feedback control, o delayed feedback control e o prediction-based feedback control (controle por realimentação baseado em predição). Estes métodos são aplicados a sistemas de tempo discreto e de tempo contínuo, com as modificações necessárias. As principais contribuições da tese são relacionadas a esses métodos, propondo um projeto de ganho de controle alternativo, uma nova lei de controle e resultados relacionados.
|
Page generated in 0.0766 seconds