• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interconnecting controlled synthesis, plasmonic, and catalysis: from education to the next generation of nanomaterials for triggering green transformations / Interconectando síntese controlada, plasmônica e catálise: da educação à próxima geração de nanomateriais para transformações verdes

Silva, Anderson Gabriel Marques da 27 March 2017 (has links)
This dissertation is directed towards the fundamental understanding of the controlled synthesis of noble-metal (silver, gold, and palladium) and metal oxide (manganese and copper oxide) nanostructures as well as their applications in heterogeneous and plasmonic catalysis. In the first part of this work (Section 1), we provided a general background concerning the science of controlled nanomaterials, their syntheses, properties, and applications in catalysis and plasmonic catalysis. Then, we describe and developed a series of protocols for the synthesis of these nanomaterials with controlled sizes and structures (spheres, cubes, rods, shells, flowers, dendrites, and tadpoles), mainly focusing on the mechanistic understanding of their formation and how physical and chemical parameters (size, shape, composition, surface morphology) may influence/modify their catalytic properties (Sections 2 and 3). In Section 4, we turned our attention for the design of simple protocols for the synthesis of advanced nanomaterials that are interesting for green catalytic transformations applications. In this case, we envisioned the use of MnO2-Au nanomaterials (nanowires and nanoflowers) displaying several properties (unique pore structure, high surface area, ultrasmall Au NPs at the surface, high concentration of oxygen vacancies and Auδ+ species, strong metal-support interactions, and uniform shapes and sizes) that are desirable for catalyzing a series of green oxidation reactions in mild conditions (low temperatures and molecular oxygen or atmospheric air as the oxidants). In Section 5, we have demonstrated that catalysis and optical properties can be merged together to improve catalytic processes, the so called-plasmonic catalysis. This allowed us the use of visible light as the energy input to drive chemical transformations in mild conditions and then provide new insights regarding the various factors that affect SPR-mediated catalytic activities in plasmonic nanostructures. Finally, in Section 6, we focused our attention on how important is to introduce both nanoscience and the synthesis/characterization of nanomaterials having controlled physicochemical features to undergraduate students. Specifically, we have described simple laboratory experiments for the synthesis of nanomaterials (gold nanospheres and Cu(OH)2/CuO nanowires) displaying uniform sizes and shapes in order to investigate and explain their optical properties, catalytic activities and formation mechanisms. / Não consta resumo na publicação.
2

Interconnecting controlled synthesis, plasmonic, and catalysis: from education to the next generation of nanomaterials for triggering green transformations / Interconectando síntese controlada, plasmônica e catálise: da educação à próxima geração de nanomateriais para transformações verdes

Anderson Gabriel Marques da Silva 27 March 2017 (has links)
This dissertation is directed towards the fundamental understanding of the controlled synthesis of noble-metal (silver, gold, and palladium) and metal oxide (manganese and copper oxide) nanostructures as well as their applications in heterogeneous and plasmonic catalysis. In the first part of this work (Section 1), we provided a general background concerning the science of controlled nanomaterials, their syntheses, properties, and applications in catalysis and plasmonic catalysis. Then, we describe and developed a series of protocols for the synthesis of these nanomaterials with controlled sizes and structures (spheres, cubes, rods, shells, flowers, dendrites, and tadpoles), mainly focusing on the mechanistic understanding of their formation and how physical and chemical parameters (size, shape, composition, surface morphology) may influence/modify their catalytic properties (Sections 2 and 3). In Section 4, we turned our attention for the design of simple protocols for the synthesis of advanced nanomaterials that are interesting for green catalytic transformations applications. In this case, we envisioned the use of MnO2-Au nanomaterials (nanowires and nanoflowers) displaying several properties (unique pore structure, high surface area, ultrasmall Au NPs at the surface, high concentration of oxygen vacancies and Auδ+ species, strong metal-support interactions, and uniform shapes and sizes) that are desirable for catalyzing a series of green oxidation reactions in mild conditions (low temperatures and molecular oxygen or atmospheric air as the oxidants). In Section 5, we have demonstrated that catalysis and optical properties can be merged together to improve catalytic processes, the so called-plasmonic catalysis. This allowed us the use of visible light as the energy input to drive chemical transformations in mild conditions and then provide new insights regarding the various factors that affect SPR-mediated catalytic activities in plasmonic nanostructures. Finally, in Section 6, we focused our attention on how important is to introduce both nanoscience and the synthesis/characterization of nanomaterials having controlled physicochemical features to undergraduate students. Specifically, we have described simple laboratory experiments for the synthesis of nanomaterials (gold nanospheres and Cu(OH)2/CuO nanowires) displaying uniform sizes and shapes in order to investigate and explain their optical properties, catalytic activities and formation mechanisms. / Não consta resumo na publicação.
3

Nanomateriais de PdAu e PdPt com forma composição e estrutura controlada para aplicações em catálise / PdAu and PdPt nanomaterials with shape, composition and structure controled for catalysis applications

Yamada, Liliam Kaori 29 November 2018 (has links)
Nanomateriais baseados em paládio (Pd) desempenham um papel central em catálise. Como suas prorpiedades catalíticas dependem de seus diversos parâmetros físico e químicos, a sua síntese controlada tem grande apelo com contexto do controle e otimização de performances. Nesse trabalho desenvolvemos metodologias simples, versáteis e ambientalmente amigáveis para a preparação de nanoestruturas de Pd com tamanho e forma controlada, seguida pelo seu uso como materiais de partida para a preparação de estruturas bimetálicas contendo ouro (Au) e platina (Pt). Espeficificamente, focamos em nanopartícuals (NPs) de Pd na forma de moitas, prisma e cubo côncavos. Com respeito aos materiais bimetálicos, desenvolvemos estruturas do tipo core-shell, tadpoles, e partículas de Au e Pt decoradas sobre as NPs de Pd. Seguda da síntese, estudamos a performance catalítica dos materiais obtidos frente a hidrogenação do p-nitrofenol (p-NPh) e a oxidação do p-aminotiofenol (PATP) mediada pela ressonância plasmônica de superfície (SPR). Nossos resultados mostraram que as atividades foram dependentes dos parâmetros físicos e químicos que definem as nanoestruturas e que materiais controlados tem desempenho superior ao material comercial. Acreditamos que os resultados desenvolvidos nessa tese contribuem para os mecanismos que governam a síntese controlada de NPs baseadas em Pd, Au e Pt, que pode servir como base para a descoberta de nanomateriais com maior complexidade estrutural e composicional visando aplicações em catálise e plasmônica. / Palladium-based (Pd) nanomaterials play a central role in catalysis. As the catalytic properties of thse materials depend on its various physical and chemical parameters, its controlled synthesis has great appeal in order to control and optimize performances. In this work, we developed facile, versatile and environmentally friendly methodologies for the preparation of Pd nanostructures of controlled sizes and shapes, followed by their use as starting materials for the preparation of bimetallic structures containing gold (Au) and platinum (Pt). Specifically, we focused on Pd nanoparticles (NPs) in the form of bushes, prisms and concave cubes. With respect to bimetallic materials, we have developed core-shell structures, tadpoles, and Au and Pt particles decorated on the Pd NPs. Following their synthestic development, we studied the catalytic performance of the obtained materials towards the hydrogenation of p-nitrophenol (p-NP) and the oxidation of p-aminothiophenol (PATP) mediated by surface plasmon resonance (SPR) excitation. Our results showed that the activities were dependent on the physical and chemical parameters that define the nanostructures and that controlled materials performed better than the commercial conterpart. Overall, we believe that the results developed in this thesis contribute to the mechanisms governing the controlled synthesis of NPs based on Pd, Au and Pt, which can serve as a basis for the discovery of nanomaterials with greater structural and compositional complexity for catalytic and plasmonic applications.
4

Nanoestruturas bimetálicas e ocas: controlando forma, composição, e estrutura para aplicações em catálise / Bimetalli and hollew nanostructures: controlling shape, composition, and structure for catalytic applications

Wendler, Alexandra Macedo 09 September 2016 (has links)
Essa tese visa o desenvolvimento de metodologias simples, eficazes, versáteis e ambientalmente amigáveis para se obter nanomateriais metálicos com controle fino sobre sua forma, composição e estrutura (interior sólido ou vazio) para aplicações em catálise. Em especial, temos interesse no desenvolvimento de nanoestruturas ocas esféricas (nanocascas) compostas por prata-ouro (AgAu), prata-paládio (AgPd) e prata platina (AgPt). Essas nanocascas foram obtidas através da reação de substituição galvânica entre esferas de Ag e íons AuCl4-, PdCl42- ou PtCl62-, respectivamente. Como a reação de substituição galvânica permite não apenas o controle sobre a composição destes sistemas, mas também a obtenção de interiores vazios, esta estratégia representa uma alternativa promissora para a obtenção de nanomateriais apresentando características controláveis e atrativas para aplicações catalíticas. Diante dessas qualidades, esse projeto focou em aplicações para reações orgânicas de redução e acoplamento. Foi realizada uma investigação, de maneira sistemática, como a estrutura e composição dos nanomateriais metálicos produzidos influenciam a sua atividade catalítica, mostando que as atividades foram fortemente dependentes da composição e estrutura, abrindo a possibilidade para o planejamento de nanocatalisadores com atividades catalíticas controladas para uma transformação de interesse. / This thesis aims at developing facile, efficient, versatile, and environmentally friendly methodologies to obtain metallic nanomaterials with controlled shapes, compositions and structure (solid or hollow interiors) for applications in catalysis. In particular, we focused on hollow nanospheres (nanoshells) composed of silver-gold (AgAu), silver-palladium (AgPd), and silver-platinum (AgPt). These nanoshells were obtained by galvanic replacement reaction between Ag nanosphere and AuCl4-, PdCl42- or PtCl62-, respectively. The galvanic replacement reaction not only allows control over the composition of these systems, but also to obtain hollow interiors. Therefore, this strategy is a very promising alternative for obtaining nanomaterials with controllable features attractive for catalytic applications. In this case, we investigated applications towards reduction and coupling transformations. A systematic investigation was carried out regarding how the structures and compositions of the produced nanoshells influenced their catalytic performance. Our results showed that the activities were strongly dependent on the composition and structure, opening a range of possibility for designing nanocatalysts with desired catalytic activities for a target transformation.
5

Nanoestruturas bimetálicas e ocas: controlando forma, composição, e estrutura para aplicações em catálise / Bimetalli and hollew nanostructures: controlling shape, composition, and structure for catalytic applications

Alexandra Macedo Wendler 09 September 2016 (has links)
Essa tese visa o desenvolvimento de metodologias simples, eficazes, versáteis e ambientalmente amigáveis para se obter nanomateriais metálicos com controle fino sobre sua forma, composição e estrutura (interior sólido ou vazio) para aplicações em catálise. Em especial, temos interesse no desenvolvimento de nanoestruturas ocas esféricas (nanocascas) compostas por prata-ouro (AgAu), prata-paládio (AgPd) e prata platina (AgPt). Essas nanocascas foram obtidas através da reação de substituição galvânica entre esferas de Ag e íons AuCl4-, PdCl42- ou PtCl62-, respectivamente. Como a reação de substituição galvânica permite não apenas o controle sobre a composição destes sistemas, mas também a obtenção de interiores vazios, esta estratégia representa uma alternativa promissora para a obtenção de nanomateriais apresentando características controláveis e atrativas para aplicações catalíticas. Diante dessas qualidades, esse projeto focou em aplicações para reações orgânicas de redução e acoplamento. Foi realizada uma investigação, de maneira sistemática, como a estrutura e composição dos nanomateriais metálicos produzidos influenciam a sua atividade catalítica, mostando que as atividades foram fortemente dependentes da composição e estrutura, abrindo a possibilidade para o planejamento de nanocatalisadores com atividades catalíticas controladas para uma transformação de interesse. / This thesis aims at developing facile, efficient, versatile, and environmentally friendly methodologies to obtain metallic nanomaterials with controlled shapes, compositions and structure (solid or hollow interiors) for applications in catalysis. In particular, we focused on hollow nanospheres (nanoshells) composed of silver-gold (AgAu), silver-palladium (AgPd), and silver-platinum (AgPt). These nanoshells were obtained by galvanic replacement reaction between Ag nanosphere and AuCl4-, PdCl42- or PtCl62-, respectively. The galvanic replacement reaction not only allows control over the composition of these systems, but also to obtain hollow interiors. Therefore, this strategy is a very promising alternative for obtaining nanomaterials with controllable features attractive for catalytic applications. In this case, we investigated applications towards reduction and coupling transformations. A systematic investigation was carried out regarding how the structures and compositions of the produced nanoshells influenced their catalytic performance. Our results showed that the activities were strongly dependent on the composition and structure, opening a range of possibility for designing nanocatalysts with desired catalytic activities for a target transformation.

Page generated in 0.0894 seconds