• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 7
  • 4
  • 1
  • Tagged with
  • 32
  • 32
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Plasmonic laser nanosurgery

Eversole, Daniel Steven 18 November 2013 (has links)
Plasmonic Laser Nanosurgery (PLN) is a novel photodisruption technique that exploits the large enhancement of ultrafast laser pulses in the near-field of gold nanoparticles for the nanoscale manipulation of biological structures. Excitation of surface plasmons on spherical nanoparticles by pulsed irradiation provides a platform for the confinement of photoactivated processes, while functionalized nanoparticle targeting methods provide the highest level of therapeutic selectivity. In this dissertation, we demonstrate and characterize the in vitro plasmonic optoporation of MDA-MB-468 human epithelial breast cancer cells labeled with plasmonic gold nanoparticles using NIR, femtosecond laser pulses. Using a 10 kDa FITC-Dextran probe dye, we find that the PLN can optoporate nanoparticle-labeled cellular membranes at fluences down to just a few mJ/cm², providing a 50-fold reduction in pulse energy necessary to induce membrane dysfunction as compared with unlabeled cells. Limited membrane dysfunction was found to lead to transient optoporation of cells as a possible transfection method, while more extensive, non-recoverable membrane dysfunction lead to cellular death as a possible plasmonic treatment of malicious cells. In the first regime, we found a maximum optoporation efficiency of approximately 31% ± 5.4% with 2 to 2.5 mW laser light having 80 MHz repetition rate. In the second regime, we were able to necrotically kill greater than 90% of irradiated cells with as little as 5 mW average power. We found that particle aggregation along the cellular surface is crucial for the success of PLN. High particle loadings were required, suggesting that particle aggregates provide large enhancements, leading to reduced PLN threshold energies. We provide experimental evidence suggesting photodisruption with ultra-low energy pulses is directly dependent upon the emission of electrons from the particle surface, which seed the formation of free radicals in the surrounding water. These free radicals mediate membrane dysfunction by polyunsaturated lipid and protein peroxidation. / text
2

Structure of the electrical double layer at aqueous gold and silver interfaces for saline solutions

Hughes, Zak, Walsh, T.R. 13 March 2019 (has links)
No / We report the structure of the electrical double layer, determined from molecular dynamics simulations, for a range of saline solutions (NaCl, KCl, MgCl2 and CaCl2) at both 0.16 and 0.60 mol kg(-1) on different facets of the gold and silver aqueous interfaces. We consider the Au/Ag(111), native Au/Ag(100) and reconstructed Au(100)(5×1) facets. For a given combination of metallic surface and facet, some variations in density profile are apparent across the different cations in solution, with the corresponding chloride counterion profiles remaining broadly invariant. All density profiles at the higher concentration are predicted to be very similar to their low-concentration counterparts. We find that each electrolyte responds differently to the different metallic surface and facets, particularly those of the divalent metal ions. Our findings reveal marked differences in density profiles between facets for a given metallic interface for both Mg(2+) and Ca(2+), with Na(+) and K(+) showing much less distinction. Mg(2+) was the only ion for which we find evidence of materials-dependent differences in interfacial solution structuring between the Ag and Au. / Veski, Air Force Office for Scientific Research grant #FA9550-12-1-0226
3

Comparative study of materials-binding peptide interactions with gold and silver surfaces and nanostructures: A thermodynamic basis for biological selectivity of inorganic materials

Palafox-Hernandez, J.P., Tang, Z., Hughes, Zak, Li, Y., Swihart, M.T., Prasad, P.N., Walsh, T.R., Knecht, M.R. 13 March 2019 (has links)
No / Controllable 3D assembly of multicomponent inorganic nanomaterials by precisely positioning two or more types of nanoparticles to modulate their interactions and achieve multifunctionality remains a major challenge. The diverse chemical and structural features of biomolecules can generate the compositionally specific organic/inorganic interactions needed to create such assemblies. Toward this aim, we studied the materials-specific binding of peptides selected based upon affinity for Ag (AgBP1 and AgBP2) and Au (AuBP1 and AuBP2) surfaces, combining experimental binding measurements, advanced molecular simulation, and nanomaterial synthesis. This reveals, for the first time, different modes of binding on the chemically similar Au and Ag surfaces. Molecular simulations showed flatter configurations on Au and a greater variety of 3D adsorbed conformations on Ag, reflecting primarily enthalpically driven binding on Au and entropically driven binding on Ag. This may arise from differences in the interfacial solvent structure. On Au, direct interaction of peptide residues with the metal surface is dominant, while on Ag, solvent-mediated interactions are more important. Experimentally, AgBP1 is found to be selective for Ag over Au, while the other sequences have strong and comparable affinities for both surfaces, despite differences in binding modes. Finally, we show for the first time the impact of these differences on peptide mediated synthesis of nanoparticles, leading to significant variation in particle morphology, size, and aggregation state. Because the degree of contact with the metal surface affects the peptide’s ability to cap the nanoparticles and thereby control growth and aggregation, the peptides with the least direct contact (AgBP1 and AgBP2 on Ag) produced relatively polydispersed and aggregated nanoparticles. Overall, we show that thermodynamically different binding modes at metallic interfaces can enable selective binding on very similar inorganic surfaces and can provide control over nanoparticle nucleation and growth. This supports the promise of bionanocombinatoric approaches that rely upon materials recognition. / Air Office of Scientific Research grant number FA9550-12-1-0226
4

Design of metal oxide catalysts

Getton, Frederick P. January 2000 (has links)
No description available.
5

Sol-Gel Chemistry: An Advanced Technique to Produce Macroscopic Nanostructures of Metal and Semiconductor Colloids

Nahar, Lamia 01 January 2017 (has links)
The fascinating physical properties that arise in materials limited to dimensions of 1-100 nm have gained noteworthy interest from the scientific community. Accordingly, there has been a lot of attention paid to the synthesis of discrete nanoparticles (NPs) and they are being investigated for a range of advanced technologies. Nonetheless, efficient use of nanomaterials in device applications require them to be assembled into solid state macro-structures while retaining their unique, nanoparticulate properties. To date, most commonly investigated assembling techniques include: covalent coupling of NPs surface groups, control evaporation of the solvent to produce ordered supercrystals or non-ordered glassy films, and polymer or bimolecular mediated self-assembly. However, in each of these cases, the interactions among discrete NPs are mediated by intervening ligands, the presence of which are detrimental for efficient electronic transport and interparticle coupling that limit performance in optoelectronic,electro-catalytic, and chemical sensor studies. Thus, novel and efficient strategies that can be predictably manipulated for direct, self-supported assembly of NPs are of critical need. A method that has proved useful to construct direct interfacial linkages of colloidal NPs is the sol-gel technique.Oxidative removal of surfactant ligands has been shown to produce self-supported NP monoliths that in most cases retain the physical properties of primary NPs.The ability to create direct interfacial bonds contributes to enhanced electrical and thermal transport as well as tunable interparticle interactions, expanding the potential range of NP technologies. During oxidation, low coordinated active sites are produced on the NP surface that interacts with a nearby NP to reduce the surface energy. The formed active sites are highly reactive allowing the NPs to establish direct interfacial linkages, polymerize into low dimensional clusters, and consequently highly porous superstructures that augment the unique, nanoparticulate properties. An added advantage of this chemistry is the ability to couple chemically similar or dissimilar systems with the potential to achieve novel/tunable physical properties. In this dissertation, application of sol-gel chemistry in efficient integration of similar and dissimilar nanoscale materials will be discussed with an aim of achieving improved optoelectronic and electro-catalytic properties. Hybrid nanomaterials composed of metal-semiconductor components exhibit unique properties in comparison to their individual counterparts, making them of great interest for optoelectronic technologies. The direct cross-linking of NPs via sol-gel chemistry provides a versatile route to tune interfacial interactions in a manner that has not been thoroughly investigated. Thus, the first part of the dissertation will illustrate the synthesis of CdSe/Ag hetero-nanostructures (aerogels) via oxidation induced self-assembly of thiol-coated NPs and investigate the evolution of optical properties as a function of Ag composition. Two hybrid systems were investigated, where the first and second excitonic energies of CdSe were matched with plasmonic energy of Au and Ag NPs. The optical properties of the CdSe/Ag hybrids were systematically examined through UV-visible, photoluminescence, and time resolved photoluminescence spectroscopy. A new emission (640 nm) from CdSe/Ag aerogels was emerged at Ag loading as low as 0.27 % whereas absorption band tailing and PL quenching effects were observed at higher Ag and Au loading, respectively. The TRPL decay time of the new emission (~600 ns) is markedly different from those of the band-edge (1.83 ± 0.03 ns) and trap state (1190 ± 120 ns) emission maxima of phase pure CdSe, supporting the existence of alternate radiative relaxation pathways in sol-gel derived CdSe/Ag hybrids. An added benefit of newly developed sol-gel chemistry is the potential to produce porous, conducting nanoarchitectures that provide a facile pathway for efficient transfer of charge carriers and small molecules. Thus, aerogels composed entirely of noble metal NPs are expected to exhibit high electrical conductivity making them promising for electrocatalysis. Thus, the second part of the dissertation will describe the extension of NP condensation strategy for the fabrication of ternary noble metal (Au/Ag/Pd, Au/Ag/Pt) aerogels for electro-oxidation of alcohols. The precursor alloy NPs were produced via stepwise galvanic replacement of thiol-coated Ag NPs. The resultant alloy NPs were self-assembled into large, free-standing aerogels that exhibit direct interparticle connectivity, high surface area (282 – 98 m2/g) and mesoporosity (2 – 50 nm) via controlled oxidation of the surfactant ligands. The gelation kinetics has been controlled by varying the oxidant/surfactant molar ratio that governs the dealloying of Ag from ternary superstructures with in-situ generated HNO3. The monolithic Au/Ag/Pd alloy aerogels exhibit higher catalytic activity and durability compared to the discrete alloy NPs (~ 20-30 times) and commercial Pd/C catalyst (2-3 times). On the other hand, Au/Ag/Pt alloy aerogels showed excellent stability at higher concentration of methanol (12 M) during electro-oxidation studies, suggesting its superior electro-catalytic activity. The synergistic effect of tri-metallic alloy mitigates the catalyst poisoning and increases the stability and durability whereas the self-supported superstructure with direct interparticle connectivity, high surface area and porosity offers a facile conduit for molecular and electronic transport, enabling the ternary aerogels an efficient electro-catalyst.
6

Interconnecting controlled synthesis, plasmonic, and catalysis: from education to the next generation of nanomaterials for triggering green transformations / Interconectando síntese controlada, plasmônica e catálise: da educação à próxima geração de nanomateriais para transformações verdes

Silva, Anderson Gabriel Marques da 27 March 2017 (has links)
This dissertation is directed towards the fundamental understanding of the controlled synthesis of noble-metal (silver, gold, and palladium) and metal oxide (manganese and copper oxide) nanostructures as well as their applications in heterogeneous and plasmonic catalysis. In the first part of this work (Section 1), we provided a general background concerning the science of controlled nanomaterials, their syntheses, properties, and applications in catalysis and plasmonic catalysis. Then, we describe and developed a series of protocols for the synthesis of these nanomaterials with controlled sizes and structures (spheres, cubes, rods, shells, flowers, dendrites, and tadpoles), mainly focusing on the mechanistic understanding of their formation and how physical and chemical parameters (size, shape, composition, surface morphology) may influence/modify their catalytic properties (Sections 2 and 3). In Section 4, we turned our attention for the design of simple protocols for the synthesis of advanced nanomaterials that are interesting for green catalytic transformations applications. In this case, we envisioned the use of MnO2-Au nanomaterials (nanowires and nanoflowers) displaying several properties (unique pore structure, high surface area, ultrasmall Au NPs at the surface, high concentration of oxygen vacancies and Auδ+ species, strong metal-support interactions, and uniform shapes and sizes) that are desirable for catalyzing a series of green oxidation reactions in mild conditions (low temperatures and molecular oxygen or atmospheric air as the oxidants). In Section 5, we have demonstrated that catalysis and optical properties can be merged together to improve catalytic processes, the so called-plasmonic catalysis. This allowed us the use of visible light as the energy input to drive chemical transformations in mild conditions and then provide new insights regarding the various factors that affect SPR-mediated catalytic activities in plasmonic nanostructures. Finally, in Section 6, we focused our attention on how important is to introduce both nanoscience and the synthesis/characterization of nanomaterials having controlled physicochemical features to undergraduate students. Specifically, we have described simple laboratory experiments for the synthesis of nanomaterials (gold nanospheres and Cu(OH)2/CuO nanowires) displaying uniform sizes and shapes in order to investigate and explain their optical properties, catalytic activities and formation mechanisms. / Não consta resumo na publicação.
7

Interconnecting controlled synthesis, plasmonic, and catalysis: from education to the next generation of nanomaterials for triggering green transformations / Interconectando síntese controlada, plasmônica e catálise: da educação à próxima geração de nanomateriais para transformações verdes

Anderson Gabriel Marques da Silva 27 March 2017 (has links)
This dissertation is directed towards the fundamental understanding of the controlled synthesis of noble-metal (silver, gold, and palladium) and metal oxide (manganese and copper oxide) nanostructures as well as their applications in heterogeneous and plasmonic catalysis. In the first part of this work (Section 1), we provided a general background concerning the science of controlled nanomaterials, their syntheses, properties, and applications in catalysis and plasmonic catalysis. Then, we describe and developed a series of protocols for the synthesis of these nanomaterials with controlled sizes and structures (spheres, cubes, rods, shells, flowers, dendrites, and tadpoles), mainly focusing on the mechanistic understanding of their formation and how physical and chemical parameters (size, shape, composition, surface morphology) may influence/modify their catalytic properties (Sections 2 and 3). In Section 4, we turned our attention for the design of simple protocols for the synthesis of advanced nanomaterials that are interesting for green catalytic transformations applications. In this case, we envisioned the use of MnO2-Au nanomaterials (nanowires and nanoflowers) displaying several properties (unique pore structure, high surface area, ultrasmall Au NPs at the surface, high concentration of oxygen vacancies and Auδ+ species, strong metal-support interactions, and uniform shapes and sizes) that are desirable for catalyzing a series of green oxidation reactions in mild conditions (low temperatures and molecular oxygen or atmospheric air as the oxidants). In Section 5, we have demonstrated that catalysis and optical properties can be merged together to improve catalytic processes, the so called-plasmonic catalysis. This allowed us the use of visible light as the energy input to drive chemical transformations in mild conditions and then provide new insights regarding the various factors that affect SPR-mediated catalytic activities in plasmonic nanostructures. Finally, in Section 6, we focused our attention on how important is to introduce both nanoscience and the synthesis/characterization of nanomaterials having controlled physicochemical features to undergraduate students. Specifically, we have described simple laboratory experiments for the synthesis of nanomaterials (gold nanospheres and Cu(OH)2/CuO nanowires) displaying uniform sizes and shapes in order to investigate and explain their optical properties, catalytic activities and formation mechanisms. / Não consta resumo na publicação.
8

Síntese de nanopartículas metálicas suportadas em sílicas mesoporosas organofuncionalizadas / Synthesis of metal nanoparticles supported in organofunctionalized mesoporous silica

Fattori, Natália, 1985- 11 November 2014 (has links)
Orientador: Yoshitaka Gushikem / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-27T17:04:12Z (GMT). No. of bitstreams: 1 Fattori_Natalia_D.pdf: 3454511 bytes, checksum: 8b2aa591a45da1692fb09a098dea4e58 (MD5) Previous issue date: 2014 / Resumo: O presente trabalho descreve um método de preparação de nanopartículas metálicas suportadas em sílicas mesoporosas organofuncionalizadas. Dois diferentes substratos foram explorados: uma sílica mesoporosa constituída de uma estrutura porosa altamente ordenada e uniforme, composta de poros ou canais cilíndricos dispostos paralelamente e empacotados em arranjo hexagonal (SBA-15), e uma sílica mesoporosa caracterizada por uma rede desordenada de poros, de tamanho e forma variados, distribuídos e interconectados aleatoriamente ao longo da estrutura porosa (SMD). As duas matrizes tiveram suas superfícies quimicamente modificadas com dois diferentes agentes funcionalizantes constituídos de cátions orgânicos (R+Cl-) com propriedades de troca-iônica, derivados das moléculas 1-metilimidazol (Imi) e 4,4?-bipiridina (Bipy). Em ambos os casos, as propriedades íontrocadoras dos cátions orgânicos ancorados na superfície das sílicas permitem a retenção de ânions complexos de metais nobres ([AuCl4]-, [PtCl6]2- e [PdCl4]2-) confinados na estrutura porosa. Estas espécies foram convertidas in situ nas nanopartículas metálicas de interesse pela redução dos íons metálicos com agentes redutores adequados. As matrizes modificadas com o grupo funcional Imi foram utilizadas como suportes para a preparação e estabilização de nanopartículas metálicas (Au, Pt, Pd e ligas metálicas Au-Pt, Au-Pd e Pt-Pd). Já as matrizes modificadas com o grupo funcional Bipy foram utilizadas como suportes para o preparo de nanopartículas de ouro / Abstract: The present work describes a new method for preparing metal nanoparticles supported on organofuncionalized mesoporous silica. Two different substrates were used: a mesoporous silica constituted by a highly ordered and uniform porous framework, with parallel cylindrical pore channels packed in a hexagonal array (SBA-15), and a mesoporous silica characterized by a disordered porous framework, with non-uniform size and shape, distributed and interconnected randomly throughout the porous structure (SMD). Both substrates were chemically modified with two different functional groups constituted of organic cations (R+Cl-) with ion-exchange properties, derivative from the molecules 1-methylimidazole (Imi) and 4,4?-bipyridine (Bipy). In both cases, the ion-exchange properties of the cationic groups attached to the silica surface allows the retention of anionic noble metal complex ([AuCl4]-, [PtCl6]2- e [PdCl4]2-), confined within the porous structure. These species were converted in situ into metal nanoparticles by means of reduction of the metal ions with proper reducing agents. The substrates modified with the functional group Imi were used as supports for the preparation and stabilization of noble metal nanoparticles (Au, Pt, Pd and metal alloys Au-Pt, Au-Pd and Pd-Pt). The substrates modified with the functional group Bipy were used as supported for the preparation of gold nanoparticles / Doutorado / Quimica Inorganica / Doutor em Ciências
9

Finite-Difference Time-Domain (FDTD) Modeling of Nanoscale Plasmonic Substrates for Surface-Enhanced Raman Spectroscopy (SERS)

Gorunmez, Zohre 19 November 2019 (has links)
No description available.
10

The Abundances and Geochemistry of Some Noble Metals in Thetford Mines Ophiolites, P. Q.

Oshin, Igbekele Oyeyemi 02 1900 (has links)
<p> Ophiolites are generally regarded as fragments of ancient oceanic crust and upper mantle emplaced on the continents. Thetford Mines ophiolites probably formed in a marginal or back-arc basin by three separate but related igneous events. The first event involved the partial melting of a rising mantle diapir. The melt produced later underwent extensive fractional crystallization involving olivine, spinel, pyroxene and plagioclase to form a layered sequence of dunitic, pyroxenitic and gabbroic cumulate rocks. The residual magma fraction after this extensive fractional crystallization was later erupted as part of hypabyssal rocks and MgO, Cr and Ni poor lavas. During the second and third stages, the residual mantle material from the first episode of melting was remelted to produce melts from which low TiO2 lavas were formed. The low TiO2 lavas are also depleted in other incompatible elements such as Zr and Y which presumably were lost into the magma produced by the first stage melting of the mantle. The mantle residue after the multi-stage melting of the mantle is believed to be represented by the harzburgite occurring at the base of the ophiolite suite.</p> <p> The cumulates display wide variability in their major and trace as well as noble metal contents principally in response to fractional crystallization while the harzburgite displays uniform chemistry, compatible with its origin as a residue of extensive partial melting of the mantle. However, on the average, Thetford Mines plutonic rocks have similar noble metal contents to Mt. Albert pluton, Gaspe, but have higher PGE than the Troodos ophiolites. Thetford Mines rocks are also depleted in the noble metals in comparison to the stratiform layered complexes such as Bushveld and Stillwater. The volcanic rocks can be classified into three groups on the basis of their noble metal contents viz., i) low Ir, low Pd lavas, ii) low Ir, high Pd and iii) high Ir, high Pd lavas. These groups correspond to the lavas produced during the first, second and third igneous events respectively. The noble metal contents of the first group are similar to most ocean floor basalts while the third group lavas are comparable only to oceanic island and intraplate basalts.</p> <p> During fractional crystallization of the parental magma of the cumulates, Ir was strongly partitioned into early formed rocks such as the olivine-chromite cumulates while Pt and Pd were progressively enriched in the residual magma fraction. Au, however, was less sensitive to fractional crystallization than the PGE.</p> <p> After the formation of the ophiolites, the lavas and hypabyssal rocks were metamorphosed to greenschist facies by hydrothermal sea water, and the ultramafic rocks were serpentinized, first in the oceanic environment by sea water and later on the continent by meteoric water, Most of the major and trace elements were mobilized during the hydrothermal alteration of the lavas but the PGE were immobile. It is suggested that the redox potential of the hydrothermal solution was not high enough to oxidize the noble metals and so permit mobilization. Au, however, shows some degree of mobilization, and it is believed that some Au occurred along grain boundaries and was carried as particulate material (mechanically) by hydrothermal solution. The noble metals were only slightly mobilized during the continental serpentinization episode. Their inertness during the oceanic serpentinization episode is attributed to the reducing condition of the oceanic environment which prevented formation of soluble noble metal complex ions.</p> <p> Unlike many ophiolite occurrences, Thetford Mines rocks appear to have very little economic potential with respect to base and noble metals, principally because of lack of abundant sulfides to act as concentrators of the metals.</p> / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.0378 seconds