• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • Tagged with
  • 13
  • 8
  • 8
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Stabilized finite element methods for convection-diffusion-reaction, helmholtz and stokes problems

Nadukandi, Prashanth 13 May 2011 (has links)
We present three new stabilized finite element (FE) based Petrov-Galerkin methods for the convection-diffusionreaction (CDR), the Helmholtz and the Stokes problems, respectively. The work embarks upon a priori analysis of a consistency recovery procedure for some stabilization methods belonging to the Petrov- Galerkin framework. It was ound that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not appropriate when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov-Galerkin (HRPG) method for the CDR problem. The structure of the method in 1 D is identical to the consistent approximate upwind (CAU) Petrov-Galerkin method [doi: 10.1016/0045-7825(88)90108-9] except for the definitions of he stabilization parameters. Such a structure may also be attained via the Finite Calculus (FIC) procedure [doi: 10.1 016/S0045-7825(97)00119-9] by an appropriate definition of the characteristic length. The prefix high-resolution is used here in the sense popularized by Harten, i.e. second order accuracy for smooth/regular regimes and good shock-capturing in non-regular re9jmes. The design procedure in 1 D embarks on the problem of circumventing the Gibbs phenomenon observed in L projections. Next, we study the conditions on the stabilization parameters to ircumvent the global oscillations due to the convective term. A conjuncture of the two results is made to deal with the problem at hand that is usually plagued by Gibbs, global and dispersive oscillations in the numerical solution. A multi dimensional extension of the HRPG method using multi-linear block finite elements is also presented. Next, we propose a higher-order compact scheme (involving two parameters) on structured meshes for the Helmholtz equation. Making the parameters equal, we recover the alpha-interpolation of the Galerkin finite element method (FEM) and the classical central finite difference method. In 1 D this scheme is identical to the alpha-interpolation method [doi: 10.1 016/0771 -050X(82)90002-X] and in 2D choosing the value 0.5 for both the parameters, we recover he generalized fourth-order compact Pade approximation [doi: 10.1 006/jcph.1995.1134, doi: 10.1016/S0045- 7825(98)00023-1] (therein using the parameter V = 2). We follow [doi: 10.1 016/0045-7825(95)00890-X] for the analysis of this scheme and its performance on square meshes is compared with that of the quasi-stabilized FEM [doi: 10.1016/0045-7825(95)00890-X]. Generic expressions for the parameters are given that guarantees a dispersion accuracy of sixth-order should the parameters be distinct and fourth-order should they be equal. In the later case, an expression for the parameter is given that minimizes the maximum relative phase error in 2D. A Petrov-Galerkin ormulation that yields the aforesaid scheme on structured meshes is also presented. Convergence studies of the error in the L2 norm, the H1 semi-norm and the I ~ Euclidean norm is done and the pollution effect is found to be small. / Presentamos tres nuevos metodos estabilizados de tipo Petrov- Galerkin basado en elementos finitos (FE) para los problemas de convecci6n-difusi6n- reacci6n (CDR), de Helmholtz y de Stokes, respectivamente. El trabajo comienza con un analisis a priori de un metodo de recuperaci6n de la consistencia de algunos metodos de estabilizaci6n que pertenecen al marco de Petrov-Galerkin. Hallamos que el uso de algunas de las practicas estandar (por ejemplo, la eoria de Matriz-M) para el diserio de metodos numericos esencialmente no oscilatorios no es apropiado cuando utilizamos los metodos de recu eraci6n de la consistencia. Por 10 tanto, con res ecto a la estabilizaci6n de conveccion, no preferimos tales metodos de recuperacion . A continuacion, presentamos el diser'io de un metodo de Petrov-Galerkin de alta-resolucion (HRPG) para el problema CDR. La estructura del metodo en 10 es identico al metodo CAU [doi: 10.1016/0045-7825(88)90108-9] excepto en la definicion de los parametros de estabilizacion. Esta estructura tambien se puede obtener a traves de la formulacion del calculo finito (FIC) [doi: 10.1 016/S0045- 7825(97)00119-9] usando una definicion adecuada de la longitud caracteristica. El prefijo de "alta-resolucion" se utiliza aqui en el sentido popularizado por Harten, es decir, tener una solucion con una precision de segundo orden en los regimenes suaves y ser esencialmente no oscilatoria en los regimenes no regulares. El diser'io en 10 se embarca en el problema de eludir el fenomeno de Gibbs observado en las proyecciones de tipo L2. A continuacion, estudiamos las condiciones de los parametros de estabilizacion para evitar las oscilaciones globales debido al ermino convectivo. Combinamos los dos resultados (una conjetura) para tratar el problema COR, cuya solucion numerica sufre de oscilaciones numericas del tipo global, Gibbs y dispersiva. Tambien presentamos una extension multidimensional del metodo HRPG utilizando los elementos finitos multi-lineales. fa. continuacion, proponemos un esquema compacto de orden superior (que incluye dos parametros) en mallas estructuradas para la ecuacion de Helmholtz. Haciendo igual ambos parametros, se recupera la interpolacion lineal del metodo de elementos finitos (FEM) de tipo Galerkin y el clasico metodo de diferencias finitas centradas. En 10 este esquema es identico al metodo AIM [doi: 10.1 016/0771 -050X(82)90002-X] y en 20 eligiendo el valor de 0,5 para ambos parametros, se recupera el esquema compacto de cuarto orden de Pade generalizada en [doi: 10.1 006/jcph.1 995.1134, doi: 10.1 016/S0045-7825(98)00023-1] (con el parametro V = 2). Seguimos [doi: 10.1 016/0045-7825(95)00890-X] para el analisis de este esquema y comparamos su rendimiento en las mallas uniformes con el de "FEM cuasi-estabilizado" (QSFEM) [doi: 10.1016/0045-7825 (95) 00890-X]. Presentamos expresiones genericas de los para metros que garantiza una precision dispersiva de sexto orden si ambos parametros son distintos y de cuarto orden en caso de ser iguales. En este ultimo caso, presentamos la expresion del parametro que minimiza el error maxima de fase relativa en 20. Tambien proponemos una formulacion de tipo Petrov-Galerkin ~ue recupera los esquemas antes mencionados en mallas estructuradas. Presentamos estudios de convergencia del error en la norma de tipo L2, la semi-norma de tipo H1 y la norma Euclidiana tipo I~ y mostramos que la perdida de estabilidad del operador de Helmholtz ("pollution effect") es incluso pequer'ia para grandes numeros de onda. Por ultimo, presentamos una coleccion de metodos FE estabilizado para el problema de Stokes desarrollados a raves del metodo FIC de primer orden y de segundo orden. Mostramos que varios metodos FE de estabilizacion existentes y conocidos como el metodo de penalizacion, el metodo de Galerkin de minimos cuadrados (GLS) [doi: 10.1016/0045-7825(86)90025-3], el metodo PGP (estabilizado a traves de la proyeccion del gradiente de presion) [doi: 10.1 016/S0045-7825(96)01154-1] Y el metodo OSS (estabilizado a traves de las sub-escalas ortogonales) [doi: 10.1016/S0045-7825(00)00254-1] se recuperan del marco general de FIC. Oesarrollamos una nueva familia de metodos FE, en adelante denominado como PLS (estabilizado a traves del Laplaciano de presion) con las formas no lineales y consistentes de los parametros de estabilizacion. Una caracteristica distintiva de la familia de los metodos PLS es que son no lineales y basados en el residuo, es decir, los terminos de estabilizacion dependera de los residuos discretos del momento y/o las ecuaciones de incompresibilidad. Oiscutimos las ventajas y desventajas de estas tecnicas de estabilizaci6n y presentamos varios ejemplos de aplicacion
12

Study of heat transfer and flow pattern in a multiphase fuel oil circular tank

Sancet, Aitor January 2009 (has links)
<p>This is a thesis work proposed by Sweco System in order to carry out a study related to the heating system of a circular fuel oil storage tank or cistern. The study tank is a 23m diameter and 18m height with a storage capacity of around 7500m3 of Eo5 heavy fuel oil. The content ought to be at a minimum storage temperature of 50ºC so that the fuel oil is fluid enough and operation labors can be adequately performed. In fact, these types of heavy fuel oils have fairly high viscosities at lower temperatures and the heating and pumping system can be compromised at temperatures below the pour point. For this purpose a heating system is installed to maintain the fluid warm. So far the system was operated by an oil burner but there are plans to its replacement by a District Heating-heat exchanger combo. Thereby, tank heating needs, flow and thermal patterns and heat transfer within it are principally studied.</p><p> </p><p>Tank boundaries are studied and their thermal resistances are calculated in order to dimension heat supply capacity. The study implies Finite Elements (Comsol Multiphysics) and Finite Volume (Fluent) analysis to work out some stationary heat transfer by conduction cases on some parts and thermal bridges present on these boundaries. Afterwards both cooling and heating processes of the fuel oil are studied using several strategies: basic models and Computational Fluid Dynamics (CFD). CFD work with Fluent is focused on optimizing inlet and outlet topologies. Understanding the cooling process is sought as well; Fluent CFD transient models are simulated in this way as well. Additionally the effect of filling levels is taken into account leading to a multiphase (fuel oil and air) flow cases where especially heating coupling of both phases is analyzed.</p><p> </p><p>Results show that maximum heat supply needs are around 80kW when the tank temperature is around 60ºC and 70kW when it is around 50ºC. Expectedly the main characteristic of the flow turns out to be the buoyancy driven convective pattern. K-ε turbulence viscous models are applied to both heating and cooling processes showing thermal stratification, especially at the bottom of the tank. Hotter fluid above follows very complex flow patterns. During the heating processes models used predict fairly well mixed and homogenous temperature distribution regardless small stratification at the bottom of the tank. In this way no concrete inlet-outlet configuration shows clear advantages over the rest. Due to the insulation of the tank, low thermal conductivity of the fluid and vast amount of mass present in the tank, the cooling process is slow (fluid average temperature drops around 5.7 ºC from 60ºC in 15 days when the tank is full and ambient temperature is considered to be at -20ºC) and lies somewhere in the middle between the solid rigid and perfect mixture cooling processes. However, due to stratification some parts of the fluid reach minimum admissible temperatures much faster than average temperature does. On the other hand, as expected, air phase acts as an additional thermal resistance; anyhow the cooling process is still faster for lower filling levels than the full one.</p> / <p>El presente proyecto fue propuesto por Sweco Systems para llevar a cabo un estudio relacionado con el sistema de calefacción de una cisterna o tanque de almacenamiento de fuel oil circular. Dicho tanque tiene 23 m de diámetro  y 18 m de altura con una capacidad de almacenamiento de alrededor de 7500 m<sup>3</sup> de Eo5 fuel oil pesado. El contenido mantenerse a una temperatura mínima de 50 ºC de manera que el fuel oil es suficientemente fluido para que las labores de operación puedan ser ejecutadas adecuadamente. De hecho, estos tipos de fuel oil pesado tienen altas viscosidades a bajas temperaturas y, por tanto, tanto los sistemas de calefacción y como el de bombeo pueden verse comprometidosr a temperaturas por debajo del pour point. Con este fin un sistema de calefacción es instalado para mantener el fluido suficientemente caliente. Hasta el momento, el sistema era operado por un quemador de fuel, sin embargo, hay planes que éste sea sustituido por un combo intercambiador de calor-District Heating. Por lo tanto, principalmente son estudiadas las necesidades de calefacción así como los flujos térmicos y fluidos.</p><p>Se estudian las fronteras del tanque, y sus respectivas resistencias térmicas son calculadas con el fin de dimensionar la capacidad necesaria de suministro de calor. El estudio implica Elementos Finitos (Comsol Multiphysics) y Volúmenes Finitos (Fluent) para elaborar análisis estacionarios de transferencia de calor por conducción en algunos casos. Existen puentes térmicos en las paredes y su importancia es también anallizada. Posteriormente se estudian tanto los procesos de calentamiento y enfriamiento del fuel oil utilizando diversas estrategias: modelos básicos y Dinámica de Fluidos Computacional (CFD). El trabajo con CFD se centra en la optimización de topologías de entradas y salidas del sistema. También es solicitado entender el proceso de enfriamiento; En este sentido, se simulan modelos CFD transitorios de Fluent. Además, el efecto de los niveles de llenado se tiene en cuenta dando lugar a estudios de flujo multifase (fuel oil y aire), haciendo hincapié en el análisis de acoplamiento de transferencia de calor entre las dos fases.</p><p>Los resultados muestran que las necesidades de calefacción máximas son de alrededor de 80kW cuando la temperatura del tanque es de alrededor de 60 º C y 70kW cuando está alrededor de 50 ºC. Como era de esperar, la principal característica de este tipo de flujos es la convección natural resultante de las fuerzas de flotabilidad. Se aplican modelos turbulentos k-ε a los procesos de calentamiento y enfriamiento, mostrando estratificación térmica, sobre todo en la parte inferior de la cisterna. El líquido más caliente que se sitúa encima muestra complejos patrones de flujo. Durante los procesos de calentamiento, los modelos utilizados predicen un buen mezclado y distribución homogénea de la temperatura independientemente de esta pequeña estratificación en la parte inferior de la cisterna. De esta manera, ninguna concreta configuración de entradas-salidas simuladas muestra claras ventajas sobre el resto. Debido al aislamiento de la cisterna, la baja conductividad térmica del fluido y la gran cantidad de masa presente en el tanque el proceso de enfriamiento es lento (la temperatura media del fluido desciende 5.7 º C desde 60 º C en 15 días cuando el tanque está lleno y la temperatura ambiente es de -20 º C) y se encuentra en algún lugar en medio de los procesos de enfriamiento del sólido rígido y perfecta mezcla. Sin embargo, debido a la estratificación, algunas partes el líquido alcanzan la temperatura mínima admisible mucho más rápido que la media de temperatura. Por otra parte, como se esperaba, la fase de aire actúa como una resistencia térmica adicional, de todos modos, el proceso de enfriamiento es aún más rápido para niveles de llenado más bajos que el lleno.</p>
13

Study of heat transfer and flow pattern in a multiphase fuel oil circular tank

Sancet, Aitor January 2009 (has links)
This is a thesis work proposed by Sweco System in order to carry out a study related to the heating system of a circular fuel oil storage tank or cistern. The study tank is a 23m diameter and 18m height with a storage capacity of around 7500m3 of Eo5 heavy fuel oil. The content ought to be at a minimum storage temperature of 50ºC so that the fuel oil is fluid enough and operation labors can be adequately performed. In fact, these types of heavy fuel oils have fairly high viscosities at lower temperatures and the heating and pumping system can be compromised at temperatures below the pour point. For this purpose a heating system is installed to maintain the fluid warm. So far the system was operated by an oil burner but there are plans to its replacement by a District Heating-heat exchanger combo. Thereby, tank heating needs, flow and thermal patterns and heat transfer within it are principally studied.   Tank boundaries are studied and their thermal resistances are calculated in order to dimension heat supply capacity. The study implies Finite Elements (Comsol Multiphysics) and Finite Volume (Fluent) analysis to work out some stationary heat transfer by conduction cases on some parts and thermal bridges present on these boundaries. Afterwards both cooling and heating processes of the fuel oil are studied using several strategies: basic models and Computational Fluid Dynamics (CFD). CFD work with Fluent is focused on optimizing inlet and outlet topologies. Understanding the cooling process is sought as well; Fluent CFD transient models are simulated in this way as well. Additionally the effect of filling levels is taken into account leading to a multiphase (fuel oil and air) flow cases where especially heating coupling of both phases is analyzed.   Results show that maximum heat supply needs are around 80kW when the tank temperature is around 60ºC and 70kW when it is around 50ºC. Expectedly the main characteristic of the flow turns out to be the buoyancy driven convective pattern. K-ε turbulence viscous models are applied to both heating and cooling processes showing thermal stratification, especially at the bottom of the tank. Hotter fluid above follows very complex flow patterns. During the heating processes models used predict fairly well mixed and homogenous temperature distribution regardless small stratification at the bottom of the tank. In this way no concrete inlet-outlet configuration shows clear advantages over the rest. Due to the insulation of the tank, low thermal conductivity of the fluid and vast amount of mass present in the tank, the cooling process is slow (fluid average temperature drops around 5.7 ºC from 60ºC in 15 days when the tank is full and ambient temperature is considered to be at -20ºC) and lies somewhere in the middle between the solid rigid and perfect mixture cooling processes. However, due to stratification some parts of the fluid reach minimum admissible temperatures much faster than average temperature does. On the other hand, as expected, air phase acts as an additional thermal resistance; anyhow the cooling process is still faster for lower filling levels than the full one. / El presente proyecto fue propuesto por Sweco Systems para llevar a cabo un estudio relacionado con el sistema de calefacción de una cisterna o tanque de almacenamiento de fuel oil circular. Dicho tanque tiene 23 m de diámetro  y 18 m de altura con una capacidad de almacenamiento de alrededor de 7500 m3 de Eo5 fuel oil pesado. El contenido mantenerse a una temperatura mínima de 50 ºC de manera que el fuel oil es suficientemente fluido para que las labores de operación puedan ser ejecutadas adecuadamente. De hecho, estos tipos de fuel oil pesado tienen altas viscosidades a bajas temperaturas y, por tanto, tanto los sistemas de calefacción y como el de bombeo pueden verse comprometidosr a temperaturas por debajo del pour point. Con este fin un sistema de calefacción es instalado para mantener el fluido suficientemente caliente. Hasta el momento, el sistema era operado por un quemador de fuel, sin embargo, hay planes que éste sea sustituido por un combo intercambiador de calor-District Heating. Por lo tanto, principalmente son estudiadas las necesidades de calefacción así como los flujos térmicos y fluidos. Se estudian las fronteras del tanque, y sus respectivas resistencias térmicas son calculadas con el fin de dimensionar la capacidad necesaria de suministro de calor. El estudio implica Elementos Finitos (Comsol Multiphysics) y Volúmenes Finitos (Fluent) para elaborar análisis estacionarios de transferencia de calor por conducción en algunos casos. Existen puentes térmicos en las paredes y su importancia es también anallizada. Posteriormente se estudian tanto los procesos de calentamiento y enfriamiento del fuel oil utilizando diversas estrategias: modelos básicos y Dinámica de Fluidos Computacional (CFD). El trabajo con CFD se centra en la optimización de topologías de entradas y salidas del sistema. También es solicitado entender el proceso de enfriamiento; En este sentido, se simulan modelos CFD transitorios de Fluent. Además, el efecto de los niveles de llenado se tiene en cuenta dando lugar a estudios de flujo multifase (fuel oil y aire), haciendo hincapié en el análisis de acoplamiento de transferencia de calor entre las dos fases. Los resultados muestran que las necesidades de calefacción máximas son de alrededor de 80kW cuando la temperatura del tanque es de alrededor de 60 º C y 70kW cuando está alrededor de 50 ºC. Como era de esperar, la principal característica de este tipo de flujos es la convección natural resultante de las fuerzas de flotabilidad. Se aplican modelos turbulentos k-ε a los procesos de calentamiento y enfriamiento, mostrando estratificación térmica, sobre todo en la parte inferior de la cisterna. El líquido más caliente que se sitúa encima muestra complejos patrones de flujo. Durante los procesos de calentamiento, los modelos utilizados predicen un buen mezclado y distribución homogénea de la temperatura independientemente de esta pequeña estratificación en la parte inferior de la cisterna. De esta manera, ninguna concreta configuración de entradas-salidas simuladas muestra claras ventajas sobre el resto. Debido al aislamiento de la cisterna, la baja conductividad térmica del fluido y la gran cantidad de masa presente en el tanque el proceso de enfriamiento es lento (la temperatura media del fluido desciende 5.7 º C desde 60 º C en 15 días cuando el tanque está lleno y la temperatura ambiente es de -20 º C) y se encuentra en algún lugar en medio de los procesos de enfriamiento del sólido rígido y perfecta mezcla. Sin embargo, debido a la estratificación, algunas partes el líquido alcanzan la temperatura mínima admisible mucho más rápido que la media de temperatura. Por otra parte, como se esperaba, la fase de aire actúa como una resistencia térmica adicional, de todos modos, el proceso de enfriamiento es aún más rápido para niveles de llenado más bajos que el lleno.

Page generated in 0.0863 seconds