• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 7
  • 3
  • 1
  • Tagged with
  • 31
  • 31
  • 26
  • 12
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

SIMULTANEOUS CHARGING AND DISCHARGING OF A LATENT HEAT ENERGY STORAGE SYSTEM FOR USE WITH SOLAR DOMESTIC HOT WATER

Murray, Robynne 26 July 2012 (has links)
Sensible energy storage for solar domestic hot water (SDHW) systems is space consuming and heavy. Latent heat energy storage systems (LHESSs) offer a solution to this problem. However, the functionality of a LHESS during simultaneous charging/discharging, an operating mode encountered when used with a SDHW, had not been studied experimentally. A small scale vertical cylindrical LHESS, with dodecanoic acid as the phase change material (PCM), was studied during separate and simultaneous charging/discharging. Natural convection was found to have a strong influence during melting, but not during solidification. During simultaneous operation heat transfer was limited by the high thermal resistance of the solid PCM. However, when the PCM was melted, direct heat transfer occurred between the hot and cold heat transfer fluids, indicating the significance of the PCM phase on heat transfer in the system. The results of this research will lead to more optimally designed LHESS for use with SDHW. ?
12

A Computational Study on the Thermal-Hydraulic Behavior of Supercritical Carbon Dioxide in Various Printed Circuit Heat Exchanger Designs

Matsuo, Bryce 02 October 2013 (has links)
There has been an ever-increasing demand for power generation, which is predicted to grow as society becomes more advanced. However, tradition fossil fuels are beginning to deplete, and there is a great necessity for alternative fuel sources that will bridge the gap between energy production and consumption. To decrease the high demand alternative fuel sources are gaining in popularity. The supercritical carbon dioxide Brayton power cycle has been proposed as a possible cycle for nuclear and concentrated solar power generation. Two main advantages of having supercritical carbon dioxide are the large property variations and component size associated with power cycle. Forced convection heat transfer of supercritical carbon dioxide in printed circuit heat exchanger geometries were investigated in the following study using a finite volume framework and the FLUENT 12.1 code. The geometries of interest were: non- chamfered zig-zag, chamfered zig-zag, and air foil. Flow through the three geometries was in the horizontal orientation and subject to a heating mode operation. A range of testing conditions were explored, including operating pressures between 7.5 to 10.2 MPa with the mass flux ranging from 326 to 762 kg/m2-s. Due to the turbulent nature of this problem, the k−E with enhanced wall treatment and shear stress transport k−ω turbulence models were considered. With this addition a total of 54 simulations were performed. Results indicated that there was an increase in the heat transfer coefficient as the supercritical carbon dioxide reached the pseudocritical temperature, conversely as there was an increase in operating pressure, the heat transfer coefficient decreased. Nevertheless, this increase near the pseudocritical temperature was due to a sharp increase in the specific heat. Mass flux effects indicated that there was an increase in heat transfer as the mass flux was increased. This was due to the increase in Reynolds number near the pseudocritical temperature. Next, pressure losses were investigated for the three geometries. The non-chamfered zig-zag channel had the greatest pressure loss associated with it, while the air foil channel had the least. Based on the results, the ratio of the friction factor to heat transfer for the non-chamfered and chamfered zig-zag geometries were approximately 2.65 and 1.57 times higher than for the air foil, thus leading to the idea that the air foil channel may be best suited for practical applications. Finally, the simulation results were compared to experimental data and existing correlations. Many existing correlations failed to accurately predict the magnitude of heat transfer, although they exhibited a similar trend. A new correlation was developed for the zig-zag geometries based on the numerical data obtained during this investigation and published experimental data. The new correlation is able to predict the maximum heat transfer coefficient within 12.4%.
13

The experimental investigation of buoyant flows in inclined differentially heated cavities

Esteifi, Khaled January 2011 (has links)
Buoyant flows are present in nature and also in many engineering applications,from domestic heating to the cooling of nuclear power plants. This experimental study focuses on the effects of angle of inclination on buoyancy-driven flows inside tall, rectangular, differentially-heated cavities. The objective is to produce detailed local flow and thermal data, which will advance our understanding of the flow physics and also provide CFD validation data. It considers a 2.18m × 0.52m × 0.0762m cavity, resulting in an aspect ratio of 28.6, with its two opposing long walls maintained at constant but different temperatures, while all the remaining walls are thermally insulated. The Rayleigh number, based on the temperature difference and spacing of the long sides, is 0.86 x 106 for most cases and the working fluid is air (Prandtl number0.71). Experimental data for the flow and the thermal fields, using laser Doppler anemometry and Chromel-Alumel thermocouple traverses respectively, are presented for the cavity inclined at 60° and 15° to the horizontal, for both stable (the hot surface being the upper surface) and unstable (the hot surface the lower one) orientations. The 15° stable case is investigated at a higher Rayleigh number of 1.54 x106 and some additional data for the 15° unstable case are also presented at this high value of Rayleigh number. Comparisons with the measurements of Betts and Bokhari [1], for the same cavity at the vertical position, are also included. For moderate angles of inclination, the flow is two-dimensional and the effects of inclination are primarily confined to the fluctuating fields. For large angles of inclination, the flow becomes three-dimensional. In the unstable 15° angle of inclination case, a set of four longitudinal vortices are formed over the entire length of the cavity, with four counter-rotating re-circulation cells within the cross-section parallel to the thermally active walls. The enhanced mixing at 15° unstable inclination leads to uniform temperature in the cavity core and thus only minor deviations from two dimensionality in the thermal field. A modest rise in Rayleigh number, in the 15° unstable case, does not affect the mean motion, but causes an increase in the normalised turbulence intensities, which in turn leads to a more uniform temperature within the cavity core and a practically two-dimensional thermal field. The stable 15° angle of inclination case, surprisingly, leads to the formation of two longitudinal vortices and two re-circulation cells. The lack of mixing, in the 15° stable case, leads to more noticeable three-dimensional thermal field. The thesis includes a full set of flow and thermal predictions and also spectral analysis of thermal fluctuations, which show a significant effect of the angle of inclination on both the power density level and the ranges of frequencies involved.
14

Reliability of CFD for buoyancy driven flows in industrial applications

Zaidi, Imama January 2013 (has links)
With the current development of the computer industry, CFD simulations have become the widespread standard in the industry, forming a baseline tool for numerous designs and safety procedures. This extensive dependence on the CFD codes rather than experiments raises the issue of the reliability of the results obtained from these codes. This thesis is intended to study the dependence of the CFD results on the grid types, numerical schemes and turbulence models. Additionally, comparisons between a general purpose commercial code STAR-CCM+ and a specialized code FDS are presented towards the end of this thesis. To study the numerical errors introduced by the grids and schemes, a laminar flow induced by natural convection inside a square cavity was considered first. Using Richardson’s extrapolation, a grid independent solution was calculated and compared with the results obtained from different grid types and schemes for Rayleigh (Ra) numbers , and . Comparison plots showed a higher dependence of the accuracy of the results on the cell shapes along with the order of the scheme and the cell size. Additionally, with the same cavity a grid dependence study for the and model has been done at .To test the reliability of the Quasi-DNS performed by an Unstructured Finite Volume (FV) CFD code, Turbulent Kinetic Energy (TKE) budgets should be calculated. User subroutines were developed to calculate the budgets of the TKE and to verify the user subroutines, prior to coaxial cylinder test case, a Q-DNS of the channel flow at has been performed using different grid configurations and numerical schemes. Results obtained from the Q-DNS of the channel flow on the polyhedral cells with the bounded central differencing scheme were found to be in good agreement with the reference DNS data. After the validation test case, a Q-DNS of the buoyancy driven turbulent flow inside a horizontal annular cavity at a high Rayleigh number, Ra = 1.18x109 with outer to inner cylinder ratio of 4.85 was carried out using a commercial code. Comparisons of Q-DNS results with low-Re URANS models, and model, showed that the latter models are able to capture the general flow features but fail to predict the large unsteadiness and high turbulence levels in the plume. However, local heat transfer rates along the inner and outer cylinder walls are on average of acceptable accuracy for engineering purposes. Finally, a full scale industrial test case of a fire in a compartment has been simulated. Both URANS ( model) and LES (Smagorinsky model) approaches are applied to model the turbulence with and without incorporating the combustion modelling. A comparison of the CFD results with the experimental data showed that for building fire simulations, accuracy of the results is more sensitive to the correlations used in the combustion modelling rather than the type of the turbulence model.
15

Numerical Modeling and Experimental Studies on the Hydrodynamics and Heat Transfer of Silica Glass Particles

January 2020 (has links)
abstract: Granular material can be found in many industries and undergo process steps like drying, transportation, coating, chemical, and physical conversions. Understanding and optimizing such processes can save energy as well as material costs, leading to improved products. Silica beads are one such granular material encountered in many industries as a catalyst support material. The present research aims to obtain a fundamental understanding of the hydrodynamics and heat transfer mechanisms in silica beads. Studies are carried out using a hopper discharge bin and a rotary drum, which are some of the most common process equipment found in various industries. Two types of micro-glass beads with distinct size distributions are used to fill the hopper in two possible packing arrangements with varying mass ratios. For the well-mixed configuration, the fine particles clustered at the hopper bottom towards the end of the discharge. For the layered configuration, the coarse particles packed at the hopper bottom discharge first, opening a channel for the fine particles on the top. Also, parameters such as wall roughness (WR) and particle roughness (PR) are studied by etching the particles. The discharge rate is found to increase with WR, and found to be proportional to (Root mean square of PR)^(-0.58). Furthermore, the drum is used to study the conduction and convection heat transfer behavior of the particle bed with varying process conditions. A new non-invasive temperature measurement technique is developed using infrared thermography, which replaced the traditional thermocouples, to record the temperatures of the particles and the drum wall. This setup is used to understand the flow regimes of the particle bed inside the drum and the heat transfer mechanisms with varying process conditions. The conduction heat transfer rate is found to increase with decreasing particle size, decreasing fill level, and increasing rotation speed. The convection heat transfer rate increased with increasing fill level and decreasing particle size, and rotation speed had no significant effect. Due to the complexities in these systems, it is not always possible to conduct experiments, therefore, heat transfer models in Discrete Element Method codes (MFIX-DEM: open-source code, and EDEM: commercial code) are adopted, validated, and the effects of model parameters are studied using these codes. / Dissertation/Thesis / Doctoral Dissertation Chemical Engineering 2020
16

Free Convection Heat Transfer From a Heated Horizontal Plate Facing Downwards

Gupta, Shiam Sunder 11 1900 (has links)
<p> An experimental study of free convection heat transfer from a heated horizontal plate facing downwards in air is reported in this thesis. The results of this study are in good agreement with the results obtained by Fishenden and Saunders. This study also investigates the effects of restraining the development of the thermal boundary layer with 1/2" and 1" edge strips around the edges of the test plate. This study led to the conclusion that edge restrains tended to decrease the heat transfer from the plate. </p> <p> The range of Grashof Prandtl Number product investigated is between 4 x 10⁸ and 8 x 10⁹ resulting in the heat flux range of 0.7 Btu/hrft² to 102 Btu/hrft². Correlations are presented relating heat flux and temperature difference between plate surface temperature and ambient temperature. </p> / Thesis / Master of Engineering (ME)
17

Development of a fuel-powered compact SMA (Shape Memory Alloy) actuator system

Jun, Hyoung Yoll 17 February 2005 (has links)
The work presents investigations into the development of a fuel-powered compact SMA actuator system. For the final SMA actuator, the K-alloy SMA strip (0.9 mm x 2.5 mm), actuated by a forced convection heat transfer mechanism, was embedded in a rectangular channel. In this channel, a rectangular piston, with a slot to accommodate the SMA strip, ran along the strip and was utilized to prevent mixing between the hot and the cold fluid in order to increase the energy density of the system. The fuel, such as propane, was utilized as main energy source in order to achieve high energy and power densities of the SMA actuator system. Numerical analysis was carried out to determine optimal channel geometry and to estimate maximum available force, strain and actuation frequency. Multi-channel combustor/heat exchanger and micro-tube heat exchanger were designed and tested to achieve high heat transfer rate and high compactness. The final SMA actuator system was composed of pumps, valves, bellows, multi-channel combustor/heat exchanger, micro-tube heat exchanger and control unit. The experimental tests of the final system resulted in 250 N force with 2 mm displacement and 1.0 Hz actuation frequency in closed-loop operation, in which the hot and the cold fluid were re-circulated by pumps.
18

Experimental Comparison Of Different Minichannel Geometries For Use In Evaporators

Agartan, Yigit Ata 01 February 2012 (has links) (PDF)
This thesis investigates the refrigerant (R-134a) flow in three minichannels having different geometries experimentally. During the last 40 years heat transfer in small scales has been a very attractive research area. Improvements in heat transfer in the refrigeration applications by means of usage of micro/minichannels provide significant developments in this area. Also it is known that experimental studies are very important to constitute a database which is beneficial for new developments and research. During the two-phase flow experiments conducted in the minichannels, low mass flow rates and constant wall temperature approach, which are the conditions in the evaporators of the refrigerator applications were applied because one of the purposes of this study is to determine the most ideal minichannel among the tested minichannels for usage in the evaporator section of the refrigerators. Two-phase flow experiments were made with refrigerant R134a in the three minichannels having hydraulic diameters of 1.69, 3.85 and 1.69 mm respectively. As distinct from the others, the third minichannel has a rough inner surface. Comparison of the experimental results of the three minichannels was made in terms of forced convection heat transfer coefficients and pressure drop at constant quality and mass flux values. As a result of the experiments, the most ideal minichannel among the tested minichannels was determined for the evaporator applications in the refrigerators.
19

Development of a fuel-powered compact SMA (Shape Memory Alloy) actuator system

Jun, Hyoung Yoll 17 February 2005 (has links)
The work presents investigations into the development of a fuel-powered compact SMA actuator system. For the final SMA actuator, the K-alloy SMA strip (0.9 mm x 2.5 mm), actuated by a forced convection heat transfer mechanism, was embedded in a rectangular channel. In this channel, a rectangular piston, with a slot to accommodate the SMA strip, ran along the strip and was utilized to prevent mixing between the hot and the cold fluid in order to increase the energy density of the system. The fuel, such as propane, was utilized as main energy source in order to achieve high energy and power densities of the SMA actuator system. Numerical analysis was carried out to determine optimal channel geometry and to estimate maximum available force, strain and actuation frequency. Multi-channel combustor/heat exchanger and micro-tube heat exchanger were designed and tested to achieve high heat transfer rate and high compactness. The final SMA actuator system was composed of pumps, valves, bellows, multi-channel combustor/heat exchanger, micro-tube heat exchanger and control unit. The experimental tests of the final system resulted in 250 N force with 2 mm displacement and 1.0 Hz actuation frequency in closed-loop operation, in which the hot and the cold fluid were re-circulated by pumps.
20

Single-Phase And Multi-Phase Convection During Solidification Of Non-eutectic Binary Solutions

Chakraborty, Prodyut Ranjan 02 1900 (has links) (PDF)
During solidification of non-eutectic alloys, non-isothermal phase change causes dendritic growth of solid front with liquid phase entrapped within the dendritic network producing the mushy region. Solidification causes rejection of solute at the solid-liquid interface and within the mushy zone, causing a sharp concentration gradient to build up across the mushy region. At the same time, a temperature gradient is present as a result of externally imposed boundary conditions as well as due to evolution of latent heat, giving rise to the so-called “double-diffusive” or thermo-solutal convection. Depending on the relative density of the solute being rejected in the liquid phase during solidification process, thermal and solutal buoyancy can either aid or oppose each other. Rejection of a heavier solute leads to aiding thermo-solutal convection situation whereas the rejection of lighter solute causes the thermal and solutal buoyancy to oppose each other. If the thermal and solutal buoyancies oppose each other, flow instability arises adjacent to the mush-bulk liquid interface regions. Thus, there may be a wide variety of convection situations present in the solidifying domain for different combinations of solution concentrations and externally imposed boundary conditions. The situation becomes even more complex if the solid phase movement along with the bulk flow is involved in the process, leading to multiphase convection. Detachment of solid phase from the solid/liquid interface can be caused by remelting (solutal and/or thermal) and shearing action of a convecting liquid adjacent to the interface. Depending on the drag of the bulk flow and the density of the solid phase relative to that of the bulk liquid, these detached particles can either float or sediment. The redistribution of the rejected solute by means of diffusion (at a local scale) and thermo-solutal convection (at system level length scales) causes heterogeneous orientation of mixture constituents over the solidifying domain popularly known as macro-segregation. From the point of view of manufacturing, severe form of macro-segregation or heterogeneous species distribution is an undesirable phenomenon and hence, a thorough understanding of the species redistribution by means of diffusion and convection during solidification process is very important. Most of the earlier studies on double diffusive convection during solidification involved fixed dendrites. However, the advection of solid particles during the solidification process can generate major instability in the flow pattern while modifying the solid front growth, and hence the macro-segregation pattern considerably. With this viewpoint in mind, the overall objective of the present work is to address these wide-varieties of single phase and multi phase flow situations and their effect on solid front growth and macro-segregation during directional solidification of non-eutectic binary alloys, numerically as well as experimentally. Different configurations of directional solidification processes involving double diffusive convection have been studied for two different kinds of non-eutectic solutions. While solidification of hypoeutectic solutions leads to aiding type double diffusive convection, the solidification of hyper-eutectic solutions is characterized by opposing type double diffusive convection. Solidification of hypo-eutectic solution generally involves single phase flow, while most of the hyper-eutectic solidification involves movement of solid phase (i.e. multiphase flow). As far as the modeling part is concerned, transport phenomena during solidification with multiphase convection are not common in existing literature. This work is a first attempt to develop a solidification model with multiphase flow based entirely on macroscopic parameters. As a first step, a generalized macroscopic framework has been developed for mathematical modeling of multiphase flow during solidification of binary alloy systems. The complete set of equivalent single-domain governing equations (mass, momentum, energy and species conservation) are coupled with the phase (solid and liquid) velocities. A generalized algorithm has been developed to determine solid detachment and solid advection phenomena, based on two critical parameters, namely: critical solid fraction and critical velocity. While the first of these two parameters (critical solid fraction) represents the strength of the dendritic bond, the second (critical velocity) stands for the intensity of flow to create drag force and solutal remelting at the dendrite roots. A new approach for evaluating liquid/solid fraction by using fixed grid enthalpy updating scheme, that accounts for multiphase flow and, at the same time, handles equilibrium and non equilibrium solidification mechanisms, has been proposed. The newly developed model has been validated with existing literatures as well as with experimental observations performed in the present work. The experimental results were obtained by using PIV as well as laser scattering techniques. Side cooled as well as top cooled configurations are studied. Single phase convection is observed for the case of hypo-eutectic solution, whereas hyper-eutectic solutions involve convection with movement of solid phase. For the case of bottom cooled hyper-eutectic solution, finger-like convection leading to freckle formation is observed. For all the hyper-eutectic cases, solid phase movement is found to alter the convection pattern and final macrosegregation significantly. The numerical results are compared with experimental observations both qualitatively as well as quantitatively.

Page generated in 0.1007 seconds