• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conversational AI Workforce Revolution : Exploring the Effects of Conversational AI on Work Roles and Organisations

Papadopulos, Julien, Christiansen, Jonas January 2023 (has links)
Recent public artificial intelligence (AI) advancements, particularly ChatGPT, are predicted to transform whole industries, work roles and organisational structures, leading to some jobs becoming obsolete while also creating new opportunities. This qualitative research explores the effects of ChatGPT on work roles and organisations in the information technology (IT) industry, more specifically, the effects on skills, competence, and organisational processes such as the automation of routine and non-routine tasks. The aim is to fill the gap in how ChatGPT affects the IT industry and to provide recommendations for policy makers, companies, and workers to address these challenges. Two research questions were formulated: “How does the increasing adoption of ChatGPT in internal work processes of businesses in the IT industry change work roles” and “impact the organisation and what are the potential implications for changes in work roles due to ChatGPT?”. To explore and answer these questions two data collection methods were used such as semi-structured interviews and qualitative questionnaires, with a combined sample size of 14 participants. The data was analysed using thematic as well as content analysis and the theoretical framework. The findings suggest that adopting ChatGPT is indeed transforming work roles and organisations by automating routine and non-routine tasks, leading to efficiency and cost savings. While some roles and skills change, others become entirely obsolete. The impact varies based on organisational factors, the nature of work and adaptability to new technologies, leading to the emergence of new opportunities in AI management and big data. Smaller companies in particular benefit from implementing ChatGPT, allowing focus on other tasks such as for example strategic development. Organisational challenges include training employees and adapting to new technology as well as concerns for job loss.
2

Conversational artificial intelligence - demystifying statistical vs linguistic NLP solutions

Panesar, Kulvinder 05 October 2020 (has links)
yes / This paper aims to demystify the hype and attention on chatbots and its association with conversational artificial intelligence. Both are slowly emerging as a real presence in our lives from the impressive technological developments in machine learning, deep learning and natural language understanding solutions. However, what is under the hood, and how far and to what extent can chatbots/conversational artificial intelligence solutions work – is our question. Natural language is the most easily understood knowledge representation for people, but certainly not the best for computers because of its inherent ambiguous, complex and dynamic nature. We will critique the knowledge representation of heavy statistical chatbot solutions against linguistics alternatives. In order to react intelligently to the user, natural language solutions must critically consider other factors such as context, memory, intelligent understanding, previous experience, and personalized knowledge of the user. We will delve into the spectrum of conversational interfaces and focus on a strong artificial intelligence concept. This is explored via a text based conversational software agents with a deep strategic role to hold a conversation and enable the mechanisms need to plan, and to decide what to do next, and manage the dialogue to achieve a goal. To demonstrate this, a deep linguistically aware and knowledge aware text based conversational agent (LING-CSA) presents a proof-of-concept of a non-statistical conversational AI solution.
3

Important criteria when choosing a conversational AI platform for enterprises

Lilja, Adam, Kihlborg, Max January 2020 (has links)
This paper evaluates and analyzes three conversational AI-platforms; Dialogflow (Google), Watson Assistant (IBM) and Teneo (Artificial Solutions) on how they perform based on a set of criteria; pricing model, ease-of-use, efficiency, experience working in the software and what results to expect from each platform. The main focus was to investigate the platforms in order to acquire an understanding of which platform would best be suited for enterprises. The platforms were compared by performing a variety of tasks aiming to answer these questions. The technical research was combined with an analysis of each company’s pricing model and strategy to get an understanding of how they target their products on the market. This study concludes that different softwares may be suitable for different settings depending on the size of an enterprise and the demand for complex solutions. Overall, Teneo outperformed its competitors in these tests and seems to be the most scalable solution with the ability to create both simple and complicated solutions. It was more demanding to get started in comparison with the other platforms, but became more efficient as time progressed. Some findings include that Dialogflow and Watson Assistant lacked capabilities when faced with  complex and complicated tasks. From a pricing strategy point of view, the companies are similar in their approach but Artificial Solutions and IBM has more flexible methods while Google has a fixed pricing strategy. Combining the pricing strategy and technical analysis this implicates that Teneo would be a better choice for larger enterprises while Watson Assistant and Dialogflow may be more suitable for smaller ones. / Det här arbetet evaluerar och analyserar tre konversationella AI-plattformar; Dialogflow (Google), Watson Assistant (IBM) och Teneo (Artificial Solutions) utifrån hur de presterar baserat på ett antal  kriterier; prismodell, enkel användning, effektivitet, upplevelse att arbeta i programvaran och vilka resultat man förväntar sig från varje plattform. Huvudsakligt fokus var att undersöka plattformarna för att få en uppfattning om vilken plattform som skulle passa bäst för företag. Plattformarna jämfördes genom att utföra en mängd olika uppgifter som syftade till att besvara dessa frågor. Den tekniska forskningen kombinerades med en analys av varje företags prismodell och prisstrategi för att få en uppfattning av hur de riktar sina produkter på marknaden. Denna studie drar slutsatsen att olika programvaror kan vara lämpliga för olika sammanhang beroende på ett företags storlek och dess efterfrågan på komplexa lösningar. Sammantaget överträffade Teneo sina konkurrenter i dessa tester och verkar vara den mest skalbara lösningen med förmågan att skapa både enkla och komplicerade lösningar. Det var mer krävande att komma igång i jämförelse med de andra plattformarna, men det blev mer effektivt med tiden. Vissa fynd inkluderar att Dialogflow och Watson Assistant saknade kapacitet när de mötte komplexa och komplicerade uppgifter. Från en prissättningsstrategisk synvinkel är företagen liknande i sin metod men Artificial Solutions och IBM har mer flexibla metoder medan Google har en fast prissättningstrategi. Genom att kombinera prisstrategi och teknisk analys innebär detta att Teneo skulle vara ett bättre val för större företag medan Watson Assistant och Dialogflow kan vara mer lämpade för mindre.
4

Reexamining Deus ex Machina: Artificial Intelligence, Theater, & a New Work

Arnold, Nathan S. January 2019 (has links)
No description available.
5

Investigating an Age-Inclusive Medical AI Assistant with Large Language Models : User Evaluation with Older Adults / Undersökning av en åldersinkluderande medicinsk AI-assistent med stora språkmodeller : Snvändarstudier med äldre vuxna

Magnus, Thulin January 2024 (has links)
The integration of Large Language Models (LLMs) such as GPT-4 and Gemini into healthcare, particularly for elderly care, represents a significant opportunity in the use of artificial intelligence in medical settings. This thesis investigates the capabilities of these models to understand and respond to the healthcare needs of older adults effectively. A framework was developed to evaluate their performance, consisting of specifically designed medical scenarios that simulate real-life interactions, prompting strategies to elicit responses and a comprehensive user evaluation to assess technical performance and contextual understanding.  The analysis reveals that while LLMs such as GPT-4 and Gemini exhibit high levels of technical proficiency, their contextual performance shows considerable variability, especially in personalization and handling complex, empathy-driven interactions. In simpler tasks, these models demonstrate appropriate responsiveness, but they struggle with more complex scenarios that require deep medical reasoning and personalized communication.  Despite these challenges, the research highlights the potential of LLMs to significantly enhance healthcare delivery for older adults by providing timely and relevant medical information. However, to realize a truly effective implementation, further development is necessary to improve the models’ ability to engage in meaningful dialogue and understand the nuanced needs of an aging population.  The findings underscore the necessity of actively involving older adults in the development of AI technologies, ensuring that these models are tailored to their specific needs. This includes focusing on enhancing the contextual and demographic awareness of AI systems. Future efforts should focus on enhancing these models by incorporating user feedback from the older population and applying user-centered design principles to improve accessibility and usability. Such improvements will better support the diverse needs of aging populations in healthcare settings, enhancing care delivery for both patients and doctors while maintaining the essential human touch in medical interactions. / Integrationen av stora språkmodeller (LLMs) såsom GPT-4 och Gemini inom sjukvården, särskilt inom äldrevård, representerar betydande möjligheter i användningen av artificiell intelligens i medicinska sammanhang. Denna avhandling undersöker dessa modellers förmåga att förstå och effektivt svara på äldres vårdbehov. För att utvärdera deras prestanda utvecklades ett ramverk bestående av specifikt utformade medicinska situationer som simulerar verkliga interaktioner, strategier för att framkalla relevanta svar från modellerna och en omfattande användarutvärdering för att bedöma både teknisk prestanda och kontextuell förståelse.  Analysen visar att även om LLMs såsom GPT-4 och Gemini visar på hög teknisk prestationsförmåga, är dess kontextuella förmåga mer begränsad, särskilt när det gäller personalisering och hantering av komplexa, empatidrivna interaktioner. Vid enklare uppgifter visar dessa modeller på en lämplig responsivitet, men de utmanas vid mer komplexa scenarier som kräver djup medicinsk resonemang och personlig kommunikation.  Trots dessa utmaningar belyser denna forskning potentialen hos LLMs att väsentligt förbättra vårdleveransen för äldre genom att tillhandahålla aktuell och relevant medicinsk information. Däremot krävs ytterligare utveckling för att verkligen möjliggöra en effektiv implementering, vilket inkluderar att förbättra modellernas förmåga att delta i en meningsfull dialog och förstå de nyanserade behoven hos äldre patienter.  Resultaten från denna avhandling understryker nödvändigheten av att aktivt involvera äldre individer i utvecklingen av AI-teknologier, för att säkerställa att dessa modeller är skräddarsydda för deras specifika behov. Detta inkluderar ett fokus på att förbättra den kontextuella och demografiska medvetenheten hos AI-system. Framtida insatser bör inriktas på att förbättra dessa modeller genom att integrera användarfeedback från äldre populationer och tillämpa principer för användarcentrerad design för att förbättra tillgänglighet och användbarhet. Sådana förbättringar kommer att bättre stödja de mångsidiga behoven hos äldre i vårdsammanhang, förbättra vårdleveransen för både patienter och läkare samtidigt som den väsentliga mänskliga kontakten i medicinska interaktioner bibehålls.

Page generated in 0.1569 seconds