• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • Tagged with
  • 17
  • 17
  • 17
  • 9
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Contribution à l'étude des architectures de récepteurs large bande multi-canaux / Study of multi-channel wideband receiver architectures.

Lesellier, Amandine 02 July 2013 (has links)
Cette thèse est le fruit d'un partenariat entre la BL TVFE de NXP Semiconductors et l'ESIEE dans le cadre d'une thèse CIFRE. Le but est d'apporter une solution qui permette la réception de plusieurs canaux pour le câble. Ce sujet est lié à la problématique de numérisation large bande. Dans la première partie, nous faisons un état-de-l'art sur les convertisseurs analogiques-numériques (CAN), sur les architectures parallèles (entrelacement temporel et bancs de filtres hybrides (BFH)), et sur les méthodes d'échantillonnage (passe-bande et complexe). Puis, nous étudions une architecture composée d'un banc de filtres analogiques et un banc de CANs. Nous cherchons à réduire surtout le taux d'échantillonnage. Nous comparons notre solution à un CAN large bande performant, avec notre fonction de coût. L'un des avantages de cette architecture est que tous les composants sont faisables, même les CANs, et qu'il est possible d'éteindre des sous-bandes pour diminuer la consommation. Cette solution est intéressante pour le moment mais n'est pas compétitive en termes de consommation et de surface. Nous proposons une alternative dans la partie 3, avec les BFH. Nous étudions cette architecture, en gardant à l'esprit la faisabilité de la solution. Nous avons choisi un BFH à deux voies, avec un filtre analogique passe-bas et un passe-haut. Puis, nous proposons un algorithme d'optimisation des filtres de synthèse pour atteindre nos objectifs de distorsion et de réjection de repliement. Une identification des filtres analogiques est aussi présentée. Finalement, une réalisation physique prouve le concept et valide les limitations théoriques de cette architecture / This thesis is a partnership between the BL TVFE of NXP Semiconductors and ESIEE. Its goal is to provide a solution to multi-channel reception for cable network. This is linked to the problematic of broadband digitization. In the first part, the state-of-the art of ADCs, parallel architectures (TI and HFB) and sampling methods (bandpass sampling and complex sampling) is recalled. Then we study an architecture called RFFB with a bank of analog filters and a bank of ADCs. We try to reduce the constraints on ADCs, especially the sampling rate with the different sampling. We propose an interesting solution to broadband digitization and compare this solution to a challenging wideband ADC, using the cost function we introduce. This architecture has the major advantage that all the components are feasible, even the ADCs, and it is possible to switch-off subbands to save power. It could be a good solution at the present time but it is not competitive in terms of power consumption and surface. An alternative is proposed in Part 3, where we study Hybrid Filter Banks. It is interesting to study this architecture with realization feasibility in mind. This is why we select a 2-channel HFB with a lowpass filter and a highpass filter as analog filters. Then we propose an efficient optimization algorithm to find the best synthesis filters and reach our targets of distortion and aliasing rejection. An identification of analog filters is also suggested to cope with the issue of sensitivity to analog errors. Finally, a physical realization proves the concept of aliasing rejection and confirms the theoretical issues of this architecture
12

Convertisseur à bancs de filtres hybrides utilisant des filtres à échantillonnage de charge pour applications de radio cognitive

Gruget, Alban 13 December 2011 (has links) (PDF)
Ce travail de thèse s'inscrit dans un pro jet inter-Carnot intitulé TEROPP (Technologies for TERminals in OPPortunistic radio applications) financé par l'ANR de 2008 à 2011. L'objectif de ce projet était de concevoir les éléments clés d'un terminal reconfigurable adapté à la radio cognitive. Les travaux ont porté depuis les antennes jusqu'à l'aspect réseaux. Les travaux décrits dans cette thèse sont focalisés sur le "frontal" RF agile en fréquences multi-voies et s'intéresse plus particulièrement à la numérisation d'un signal large-bande via une architecture multi-voies. Nous avons proposé et étudié une nouvelle architecture basée sur la technique de banc de filtres hybride (BFH). Un BFH est une architecture parallèle à sous-échantillonnage qui met en jeu de l'analogique, i.e. des filtres analogiques et des convertisseurs analogique-numériques ainsi que du traitement numérique. L'originalité de l'architecture proposée est d'utiliser des filtres à échantillonnage de charge passe-bande pour les filtres analogiques. Ces filtres ont l'avantage d'être facilement intégrables en CMOS et reconfigurables. Une telle architecture devrait permettre de convertir une bande très large, tout en limitant la complexité et la consommation et offre des possibilités de reconfigurabilité en termes de bande reçue et résolution.
13

Convertisseur analogique-numérique large bande avec correction mixte / Mixed calibration for high speed analog-to-digital converters

Mas, Alexandre 10 July 2018 (has links)
Les besoins en débit d’information à transmettre ne cessent de croitre. Aussi la généralisation des émetteurs-récepteurs large-bande implique l’intégration de solutions sur une technologie silicium CMOS afin que leur cout soit compatible avec une application grand public. Si l’intégration massive des traitements numériques est facilitée par les dernières technologies CMOS, la fonction de conversion analogique-numérique est quant à elle plus difficile. En effet, afin d’optimiser l’étage frontal analogique, le convertisseur analogique-numérique (CAN) doit répondre à des contraintes très fortes en termes de largeur de bande (de l’ordre du GHz) et de résolution (de 10 à 14bits). Les convertisseurs analogique-numérique basés sur l’entrelacement temporel (CAN-ET) connaissent un essor remarquable car ce sont aujourd’hui les seuls à pouvoir répondre aux deux contraintes énoncées ci-dessus. Cependant, cette structure de CAN reste sensible aux défauts d’appariement entre ses différentes voies de conversion et voit ses performances limitées par la présence de raies parasites liées à des erreurs statiques (offset et gain) et dynamiques (skew et bande passante). Pour réduire l’impact des erreurs dynamiques, nous avons implémenté une calibration mixte en technologie FD-SOI 28nm. Dans une première partie, un état de l’art portant sur les différentes techniques de minimisation et de compensations analogiques des erreurs de skew et bande passante est réalisé. A partir de cette étude, nous proposons différentes techniques analogiques pour compenser les d´esappariements de bande passante et de skew. Pour compenser le skew, nous profitons des avantages de la technologie FD-SOI en modulant fortement la tension de la face arrière d’un ou plusieurs transistor(s) d’ échantillonnage. Concernant l’erreur de bande passante, nous proposons d’ajuster la résistance équivalente du T/H en adaptant la résistance à l’état passant des transistors d’échantillonnage de cinq manières différentes. Pour définir parmi toutes les compensations proposées celle qui est la plus adaptée à nos besoins, nous comparons différents critères de performance. Après avoir identifié la meilleure compensation de skew et de bande passante, nous avons, dans une dernière partie, implémenté une calibration mixte des erreurs statiques et dynamiques o`u l’estimation numérique est basée sur la méthode des Moindres Carrés. / Data transmission requirements are ever more stringent, with respect to more throughput, less power consumption and reduced cost. The cable TV market is where broadband transceivers must continuously innovate to meet these requirements. In these transceivers, the analog front-end part must be adapted to meet the increasingly tighter specifications of the newest standards. A key bottleneck is the Analogto- Digital Converter (ADC), which must reach a sampling rate of several Gigasamples per second at effective conversion resolutions in the range of 10 to 14 bits. Among the possible choices, converters based on Time-Interleaving (TI-ADC) are experiencing remarkable growth, and today they appear to be the best candidates to rmeet the two constraints set out above. However, TI-ADCs are hampered by mismatches between its different conversion channels, which result in degraded performance due to the appearance of mismatch spurs in the frequency domain, arising both from static errors (gain and offset mismatch) and dynamic (skew and bandwidth) errors. To reduce these errors, we have investigated a mixeddomain calibration strategy for TI-ADCS in 28nm FDSOI technology. We strongly focused the analog compensation of dynamic errors. This report begins with a review of the state-of-theart w.r.t. the mismatch reduction and analog compensation techniques for both dynamic errors. Based on these results, we then introduce a variety of analog techniques aimed at compensating the bandwidth and skew mismatches. In order to compensate for the skew, we make the most of the FD-SOI technology by tightly regulating the voltage of the back gate of one or several sampling transistors. For the bandwidth error, we recommend that the T/H equivalent resistor be adjusted, adapting the on-resistor of the sampling transistors using up to five different techniques. Once the most appropriate skew and bandwidth compensations were identified, we ultimately implemented a mixed calibration of static and dynamic errors along with a digital calculation based upon the "Least- Squares" method.
14

Design and optimization of high speed flash analog-to-digital converters in SiGe BiCMOS technologies / Conception et Optimisation de convertisseurs AD à haute vitesse

Ritter, Philipp 10 July 2013 (has links)
Le Convertisseur Analogique Numérique (CAN) est une brique essentielle de la ré- ception et du traitement des données à très haut débit. L’architecture de type "flash" effectue la quantification en comparant simultanément le signal analogique d’entrée à l’ensemble des références du codeur, ce qui en fait, par construction, l’architecture la plus rapide de CAN. Par le passé, cette architecture a démontré des capacités de codage supérieures à 20GS/s dans les conditions de Nyquist. Cependant, cette capac- ité à travailler à très haute vitesse a donné le jour à des réalisations très consommantes (plusieurs Watts) donc peu efficaces énergétiquement. Cette thèse explore différentes approches d’optimisation de l’efficacité énergétique des CAN "flash". Afin de min- imiser la consommation du CAN, il n’y a pas d’Echantillonneur-Bloqueur (EB) en tête du circuit. Les étages d’entrée du codeur sont ainsi exposés à la pleine bande passante du signal, à savoir DC-10GHz. Ceci impose des contraintes très strictes sur la précision temporelle de la détection et de la quantification du signal. L’essentiel de cette thèse est donc concentré sur l’analyse des effets hautes frèquences impactant la conception des éléments frontaux du CAN. La validité et l’efficacité des méthodes présentées sont démontrées par des mesures autour d’un CAN 6 bit 20 GS/s. En em- pruntant les techniques de conception des circuits ultra-rapides et en exploitant le po- tentiel haute-fréquence de la technologie à l’état de l’art SiGe BiCMOS, un circuit complètement analogique a ainsi pu être réalisé. Ce CAN est mono-voie et n’a besoin d’aucune calibration ou correction, ni d’assistance digitale. Avec à peine 1W, ce cir- cuit atteint un record d’efficacité énergétique dans l’état de l’art des CAN rapides non entrelacés. / High speed Analog-to-Digital Converters (ADC) are essential building blocks for the reception and processing in high data rate reception circuits. The flash ADC archi- tecture performs the digitization by comparing the analog input signal to all refer- ence levels of the quantization range simultaneously and is thus the fastest architecture available. In the past the flash architecture has been employed successfully to digitize signals at Nyquist rates beyond 20 GS/s. However the inherent high speed operation has led to power consumptions of several watts and hence to poor energy efficien- cies. This thesis explores approaches to optimize the energy efficiency of flash ADCs. In particular, no dedicated track-and-hold stage is used at the high speed data input. This imposes very stringent requirements on the timing accuracy and level accuracy in the high speed signal distribution to the comparators. The comparators need to ex- hibit a very high speed capability to correctly perform the quantization of the signal against the reference levels. The main focus of this thesis is hence the investigation of design relevant high frequency effects in the analog ADC frontend, such as the bandwidth requirement of overdriven comparators, the data signal distribution over a passive transmission line tree and the dynamic linearity of emitter followers. The correctness and efficacy of the presented methods is demonstrated by measurement results of a 6 bit 20 GS/s Nyquist rate flash ADC fabricated within the context of this work. The demonstrator ADC operates without time interleaving, no calibration or correction whatsoever is needed. By employing design techniques borrowed from high speed analog circuits engineering and by exhausting the high speed potential of a state-of-the-art SiGe BiCMOS production technology, a flash ADC with a record energy efficiency could be realized.
15

Burst CMOS image sensor with on-chip analog to digital conversion / Capteur d'image Burst CMOS avec conversion analogique-numérique sur puce

Bonnard, Rémi 10 February 2016 (has links)
Ce travail vise à étudier l’apport des technologies d’intégration 3D à l’imagerie CMOS ultra-rapide. La gamme de vitesse d’acquisition considérée ici est du million au milliard d’images par seconde. Cependant au-delà d’une dizaine de milliers d’images par seconde, les architectures classiques de capteur d’images sont limitées par la bande passante des buffers de sortie. Pour atteindre des fréquences supérieures, une architecture d’imageur burst est utilisée où une séquence d’une centaine d’images est acquise et stockée dans le capteur. Les technologies d’intégration 3D ont connu un engouement depuis une dizaine d’années et sont considérées comme une solution complémentaire aux travaux menés sur les dispositifs (transistors, composants passifs) pour améliorer les performances des circuits intégrés. Notre choix s’est porté sur une technologie où les circuits intégrés sont directement empilés avant la mise en boitier (3D-SIC). La densité d’interconnexions entre les différents circuits est suffisante pour permettre l’implémentation d’interconnexions au niveau du pixel. L’intégration 3D offre d’intéressants avantages à l’imagerie intégrée car elle permet de déporter l’électronique de lecture sous le pixel. Elle permet ainsi de maximiser le facteur de remplissage du pixel tout en offrant une large place aux circuits de conditionnement du signal. Dans le cas de l’imagerie burst, cette technologie permet de consacrer une plus grande surface aux mémoires dédiées au stockage de la séquence d’image et ce au plus proche des pixels. Elle permet aussi de réaliser sur la puce la conversion analogique numérique des images acquises. / This work aims to study the inflows of the 3D integration technology to ultra-high speed CMOS imaging. The acquisition speed range considered here is between one million to one billion images per second. However above ten thousand images per second, classical image sensor architectures are limited by the data bandwidth of the output buffers. To reach higher acquisition frequencies, a burst architecture is used where a set of about one hundred images are acquired and stored on-chip. 3D integration technologies become popular more than ten years ago and are considered as a complementary solution to the technological improvements of the devices. We have chosen a technology where integrated circuits are stacked on the top of each other (3D-SIC). The interconnection density between the circuits is high enough to enable interconnections at the pixel level. The 3D integration offers some significant advantages because it allows deporting the readout electronic below the pixel. It thus increases the fill factor of the pixel while offering a wide area to the signal processing circuit. For burst imaging, this technology provides more room to the memory dedicated to the image storage while staying close to the pixel. It also allows implementing analog to digital converter on-chip.
16

Systèmes de numérisation hautes performances – Architectures robustes adaptées à la radio cognitive. / High performance digitization systems - robust architecture adapted to the cognitive radio

Song, Zhiguo 17 December 2010 (has links)
Les futures applications de radio cognitive requièrent des systèmes de numérisation capables de convertir alternativement ou simultanément soit une bande très large avec une faible résolution soit une bande plus étroite avec une meilleure résolution, ceci de manière versatile (i.e. par contrôle logiciel). Pour cela, les systèmes de numérisation basés sur les Bancs de Filtres Hybrides (BFH) sont une solution attractive. Ils se composent d'un banc de filtres analogiques, un banc de convertisseurs analogique-numérique et un banc de filtres numériques. Cependant, ils sont très sensibles aux imperfections analogiques. L'objectif de cette thèse était de proposer et d’étudier une méthode de calibration qui permette de corriger les erreurs analogiques dans la partie numérique. De plus, la méthode devait être implémentable dans un système embarqué. Ce travail a abouti à une nouvelle méthode de calibration de BFH utilisant une technique d'Égalisation Adaptative Multi-Voies (EAMV) qui ajuste les coefficients des filtres numériques par rapport aux filtres analogiques réels. Cette méthode requiert d'injecter un signal de test connu à l'entrée du BFH et d'adapter la partie numérique afin de reconstruire le signal de référence correspondant. Selon le type de reconstruction souhaité (d’une large-bande, d’une sous-bande ou d’une bande étroite particulière), nous avons proposé plusieurs signaux de test et de référence. Ces signaux ont été validés en calculant les filtres numériques optimaux par la méthode de Wiener-Hopf et en évaluant leurs performances de ces derniers dans le domaine fréquentiel. Afin d’approcher les filtres numériques optimaux avec une complexité calculatoire minimum, nous avons implémenté un algorithme du gradient stochastique. La robustesse de la méthode a été évaluée en présence de bruit dans la partie analogique et de en tenant compte de la quantification dans la partie numérique. Un signal de test plus robuste au bruit analogique a été proposé. Les nombres de bits nécessaires pour coder les différentes données dans la partie numérique ont été dimensionnés pour atteindre les performances visées (à savoir 14 bits de résolution). Ce travail de thèse a permis d'avancer vers la réalisation des futurs systèmes de numérisation basés sur les BFH. / The future applications of cognitive radio require digitization systems being capable to perform a flexible conversion in terms of bandwidth and Resolution. The digitization systems based on Hybrid Filter Bancs (HFB) provide an attractive solution for achieving this purpose. The HFBs consist of a bank of analog filters, a bank of analog/digital converters and a bank of digital filters. However, they are so sensitive that the presence of analog errors renders them impossible to carry out. Therefore, the goal of the thesis was to propose and study a calibration method for the analog errors to be corrected in the digital part. Furthermore, the proposed method had to be implementable in an embedded system. Based on Multichannel Adaptive Equalization (MCAE), we proposed a new calibration method. The digital filter coefficients are adjusted according to the real analog filters. To perform this calibration process, a known test signal is injected into the HFB which output is compared to a linked desired signal, their difference is used to adjust the digital part iteratively until the goal is achieved. For different reconstruction goals (wideband, subband or a particular narrow band), we proposed two ways to generate the test and desired signals. With the filters achieved by using method Wiener-Hopf, these signals have been validated by the evaluation of the reconstruction performances. In order to approach the optimal coefficients with a minimal computational complexity, we have implemented an algorithm of stochastic gradient. The robustness of the MCAE method has been studied both in presence of the thermal noise in the analog part and in presence of quantization errors in the digital part. A more robust test signal against the analog noise has been proposed. According to our analytical expressions, for the reconstruction goal (i.e. resolution of 14 bits), the numbers of bits needed for coding the different data of the digital part can be indicated. This thesis is a step forward for realizing future digitization systems based on HFBs.
17

Systèmes de numérisation hautes performances - Architectures robustes adaptées à la radio cognitive.

Song, Zhiguo 17 December 2010 (has links) (PDF)
Les futures applications de radio cognitive requièrent des systèmes de numérisation capables de convertir alternativement ou simultanément soit une bande très large avec une faible résolution soit une bande plus étroite avec une meilleure résolution, ceci de manière versatile (i.e. par contrôle logiciel). Pour cela, les systèmes de numérisation basés sur les Bancs de Filtres Hybrides (BFH) sont une solution attractive. Ils se composent d'un banc de filtres analogiques, un banc de convertisseurs analogique-numérique et un banc de filtres numériques. Cependant, ils sont très sensibles aux imperfections analogiques. L'objectif de cette thèse était de proposer et d'étudier une méthode de calibration qui permette de corriger les erreurs analogiques dans la partie numérique. De plus, la méthode devait être implémentable dans un système embarqué. Ce travail a abouti à une nouvelle méthode de calibration de BFH utilisant une technique d'Égalisation Adaptative Multi-Voies (EAMV) qui ajuste les coefficients des filtres numériques par rapport aux filtres analogiques réels. Cette méthode requiert d'injecter un signal de test connu à l'entrée du BFH et d'adapter la partie numérique afin de reconstruire le signal de référence correspondant. Selon le type de reconstruction souhaité (d'une large-bande, d'une sous-bande ou d'une bande étroite particulière), nous avons proposé plusieurs signaux de test et de référence. Ces signaux ont été validés en calculant les filtres numériques optimaux par la méthode de Wiener-Hopf et en évaluant leurs performances de ces derniers dans le domaine fréquentiel. Afin d'approcher les filtres numériques optimaux avec une complexité calculatoire minimum, nous avons implémenté un algorithme du gradient stochastique. La robustesse de la méthode a été évaluée en présence de bruit dans la partie analogique et de en tenant compte de la quantification dans la partie numérique. Un signal de test plus robuste au bruit analogique a été proposé. Les nombres de bits nécessaires pour coder les différentes données dans la partie numérique ont été dimensionnés pour atteindre les performances visées (à savoir 14 bits de résolution). Ce travail de thèse a permis d'avancer vers la réalisation des futurs systèmes de numérisation basés sur les BFH.

Page generated in 0.1117 seconds