Spelling suggestions: "subject:"convertisseur modulaire multiniveau"" "subject:"convertisseur modulaire multiniveaux""
1 |
Modélisation et commande des convertisseurs MMC en vue de leur intégration dans le réseau électrique / Modular multilevel converters model and control for the integration to the grid systemSamimi, Shabab 09 November 2016 (has links)
Le système de transport d’électricité doit évoluer pour satisfaire les besoins du marché de l’électricité et de l’insertion de la production renouvelable. Les systèmes de transport dits HVDC se développent. Les interfaces d’électroniques de puissance vont jouer un rôle majeur et doivent faire preuve d’une extrême fiabilité, d’une grande efficacité et rester économiquement abordables.La technologie MMC (Convertisseur Modulaire Multi-niveaux) connaît un essor par rapport à des technologies classiques, comme le convertisseur trois-niveaux. Sa topologie étant complexe, deux niveaux de contrôle peuvent être définis. Le premier niveau porte sur le contrôle des interrupteurs pour équilibrer les tensions des sous-modules. Le second niveau contrôle les courants, la puissance et l’énergie dans le système.Cette thèse est axée sur ce deuxième niveau de contrôle. Une approche hiérarchisée et formelle, basée sur l’inversion du modèle pour le contrôle de l’énergie du MMC est présentée. Pour ce contrôle, différentes méthodes ont été proposées et comparées. Cela implique de développer une modélisation, mettre en place un contrôle. Différents modèles et contrôles ont été développés.Le MMC est généralement intégré dans une liaison HVDC où deux stations AC/DC ont un contrôle différent. Un soin particulier doit être apporté à la station dédiée au contrôle de la tension. En effet, la gestion de l’énergie dans le MCC est un point critique pour la stabilité de la tension.Enfin, les différents types de contrôle évoqués ont été étudiés dans le cas d’une liaison HVDC. Il a été montré que les échanges entre le bus DC et les MMC jouent un rôle important pour la régulation de la tension du bus DC / In future, the capability of the electric power transmission continues to grow due to renewable energy production and the needs of electrical market. Consequently, many HVDC transmission systems are developed. Definitely the power electronic interfaces will play a key role to provide high reliability, good efficiency and cost effectiveness for this AC/DC conversion.Recently, the Modular Multilevel Converter (MMC) has taken the advantage over the more classical converter as three-level VSC. Since MMC topology is complex, two different control levels may be distinguished: the control of the switches mainly orientated on the balance of hundreds of voltage on the elementary submodules, the higher level control whose aim is to control the currents, power and energy in the system.This thesis is oriented mainly on the latter. It discusses a hierarchical and formal approach for the MMC to control the energy in all the storage elements. At first it is shown that an energy control is required mandatory. Secondly, it supposes to develop an energetic model which is inverted to design the energy control. Then different solutions of control have been developed and discussed.In the majority of applications, MMC is integrated in an HVDC point to point link where the two AC/DC substations have different roles. A specific attention has to be paid on the station which controls the voltage since the way to manage the energy in the MMC has a critical role in the DC voltage stability.Finally, all these types of control have been tested and discussed on an HVDC. It is shown that the exchange between the DC bus and the MMC placed on both sides play a key role in the DC bus voltage regulation.
|
2 |
Une Topologie CA-CC Baseé sur un Convertisseur Modulaire Multiniveau Entrelacé Faisible à Applications de Transformateur d’Électronique de Puissance / An AC-DC Topology Based on an Interleaved Modular Multilevel Converter Feasible to Solid-State Transformer ApplicationsRabelo joca, Davi 11 January 2019 (has links)
Ce travail concerne l'étude théorique,l’analyse numérique et la validationexpérimentale d'une topologie de convertisseurd’électronique de puissance basée sur unconvertisseur multiniveau modulaire entrelacéavec transformateur moyenne fréquence.L’architecture est adaptée pour l’étage deconversion AC-DC dans les applications detransformateur d'électronique de puissance pourla connexion entre un réseau alternatif moyennetension et un réseau continu basse tension.L’entrelacement réduit les pertes par conductiondans les interrupteurs. Le transformateurmoyenne fréquence 10 kHz assure une isolationgalvanique et connecte le convertisseurmultiniveau modulaire entrelacé à unconvertisseur pont complet. Avec comme pointde départ la structure, le principe defonctionnement, la modélisation, la technique demodulation et le schéma de commande sontdiscutés. Une caractéristique du convertisseur estla génération simultanée de la tension du réseaubasse fréquence et de la tension primaire dutransformateur moyenne fréquence.L'équilibrage de la tension des condensateurs etla minimisation du courant de circulation sontcombinés dans un seul algorithme. La commanderégule le courant alternatif et la tension du buscontinu, du côté haute tension, ainsi que latension continue et le flux de puissance, du côtébasse tension. La validation expérimentale duconvertisseur est réalisée avec un prototype de720 W monophasé à l’échelle réduite. Lesrésultats démontrent la stabilité du système decommande lors d'opérations en régimepermanent et dynamiques (pas de charge,inversion du flux de puissance). / This work aims to present thetheoretical study, the numerical analysis and theexperimental validation of a power electronicsconverter topology based on an interleavedmodular multilevel converter with mediumfrequencytransformer. The architecture issuitable for the AC-DC stage in solid-statetransformer applications for the connectionbetween a medium-voltage AC grid and a lowvoltageDC grid. The interleaving reduces theswitch conduction losses. The 10 kHz mediumfrequencytransformer provides galvanicisolation and connects the interleaved modularmultilevel converter to a full-bridge converter.From the converter structure, the principle ofoperation, the modeling, the modulationtechnique, and the control scheme are discussed.One feature of the converter is the simultaneousgeneration of the low-frequency grid voltageand the medium-frequency transformer primaryvoltage. The capacitor voltage balancing and thecirculating currents minimization are combinedtogether in a single algorithm. The controlsystem regulates the AC current and the DC busvoltage, on the high-voltage side, and the DCvoltage and power flow, on the low voltage side.The experimental validation of the converter ismade with a scaled-down single-phase 720 Wprototype. The results demonstrate the controlsystem stability in steady-state and dynamic(load step, power flow inversion) operations.
|
3 |
Stratégie de protection de réseaux de transport d’électricité en courant continu multi-terminaux à l’aide de disjoncteurs mécaniques DC / Protection strategy for multi-terminal High Voltage Direct Current grids based on mechanical DC circuit breakersLoume, Dieynaba 03 October 2017 (has links)
Les réseaux de transport d’électricité multi-terminaux à courant continu se révèlent être la solution adéquate pour une intégration massive d’énergie renouvelable dans les réseaux alternatifs existants. En effet, les réseaux en courant continu sont capables de transmettre de manière efficace des niveaux de puissance élevés sur de très longues distances par rapport aux réseaux alternatifs car, à partir d'une certaine puissance à transmettre, il existe une distance limite à partir de laquelle la transmission d’énergie en courant alternatif perd sa compétitivité face à la transmission en courant continu. L'un des principaux défis liés au développement de ces réseaux de transport d’électricité à courant continu ou Supergrid, concerne leur protection contre des défauts de type court-circuit sur des liaisons en courant continu. . Dans ce travail de thèse, un nouveau concept de stratégie de protection des réseaux en courant continu à haute tension en cas de défaut court-circuit est proposé. La stratégie repose sur une philosophie de protection ayant comme priorité la suppression du courant de défaut avant l’isolation de la liaison en défaut. Elle est basée sur l’utilisation de disjoncteurs mécaniques à courant continu sans avoir recours à des limiteurs de courant de défaut. Une séquence de protection primaire ainsi que deux séquences de sauvegarde en cas de défaillance de disjoncteurs ont été développées, testées et validées à l’aide de simulations de transitoires électromagnétiques et de simulations temps-réel. En outre, les algorithmes des relais de protection ont été implémentés avec l'aide de l’outil d’analyse fonctionnelle descendante SADT (Structured Analysis and Design System). Cette thèse a été effectuée dans le cadre du SuperGrid Institute, une plate-forme de recherche collaborative visant à développer des technologies pour les futurs réseaux de transport d'électricité et regroupant l'expertise d'industries telles que GE Grid Solutions et les laboratoires de recherche publique comme le laboratoire de génie électrique de Grenoble (G2Elab). / Multi-terminal High Voltage Direct Current (MTDC) grids,have been proven to be an adequate solution for massive integration of renewable energy power to existing High Voltage Alternating Current (HVAC) grids. Indeed, HVDC grids are capable of transmitting efficiently high level of power over very long distances compared to HVAC grids since, from a certain power to be transmitted, there is a limited distance from which the AC power transmission loses its efficiency and becomes very costly compared to DC power transmission. One of the main challenges related to the development of theses multi-terminal HVDC grids, or Supergrids, concerns their protection against DC short-circuit faults. In this thesis, a new concept of protection strategy for MTDC grids in case of permanent short-circuit fault on a DC cable has been proposed. The strategy is based on the non-selective fault clearing philosophy where the priority is given to the suppression of the fault current before isolating the faulty transmission line. The strategy is based on mechanical DC breakers and no fault current limiting devices are used. A primary protection sequence as well as two back-up sequences in case of breakers operation failure have been developed, tested and validated through Electromagnetic Transient (EMT) and Real-Time (RT) simulations. Also, algorithms to be implemented on protective relays have been designed with the help of the Structured Analysis and Design System (SADT). This PhD thesis has been performed in the frame of the SuperGrid Institute, a collaborative research platform aiming to develop technologies for the future electricity transmission network and bringing together the expertise of industries such as GE grid solutions and public research laboratories as the Grenoble Electrical Engineering Laboratory (G2Elab).
|
Page generated in 0.091 seconds