Spelling suggestions: "subject:"convex"" "subject:"konvex""
181 |
Computational Experience and the Explanatory Value of Condition Numbers for Linear OptimizationOrdónez, Fernando, Freund, Robert M. 25 September 2003 (has links)
The goal of this paper is to develop some computational experience and test the practical relevance of the theory of condition numbers C(d) for linear optimization, as applied to problem instances that one might encounter in practice. We used the NETLIB suite of linear optimization problems as a test bed for condition number computation and analysis. Our computational results indicate that 72% of the NETLIB suite problem instances are ill-conditioned. However, after pre-processing heuristics are applied, only 19% of the post-processed problem instances are ill-conditioned, and log C(d) of the finitely-conditioned post-processed problems is fairly nicely distributed. We also show that the number of IPM iterations needed to solve the problems in the NETLIB suite varies roughly linearly (and monotonically) with log C(d) of the post-processed problem instances. Empirical evidence yields a positive linear relationship between IPM iterations and log C(d) for the post-processed problem instances, significant at the 95% confidence level. Furthermore, 42% of the variation in IPM iterations among the NETLIB suite problem instances is accounted for by log C(d) of the problem instances after pre-processin
|
182 |
Shortest Paths, Network Design and Associated PolyhedraMagnanti, Thomas L., Mirchandani, Prakash 04 1900 (has links)
We study a specialized version of network design problems that arise in telecommunication, transportation and other industries. The problem, a generalization of the shortest path problem, is defined on an undirected network consisting of a set of arcs on which we can install (load), at a cost, a choice of up to three types of capacitated facilities. Our objective is to determine the configuration of facilities to load on each arc that will satisfy the demand of a single commodity at the lowest possible cost. Our results (i) demonstrate that the single-facility loading problem and certain "common breakeven point" versions of the two-facility and three-facility loading problems are polynomially solvable as a shortest path problem; (ii) show that versions of the twofacility loading problem are strongly NP-hard, but that a shortest path solution provides an asymptotically "good" heuristic; and (iii) characterize the optimal solution (that is, specify a linear programming formulation with integer solutions) of the common breakeven point versions of the two-facility and three-facility loading problems. In this development, we introduce two new families of facets, give geometric interpretations of our results, and demonstrate the usefulness of partitioning the space of the problem parameters to establish polyhedral integrality properties. Generalizations of our results apply to (i) multicommodity applications and (ii) situations with more than three facilities.
|
183 |
Minimizing the mass of the codimension-two skeleton of a convex, volume-one polyhedral regionJanuary 2011 (has links)
In this paper we establish the existence and partial regularity of a (d-2)-dimensional edge-length minimizing polyhedron in [Special characters omitted.] . The minimizer is a generalized convex polytope of volume one which is the limit of a minimizing sequence of polytopes converging in the Hausdorff metric. We show that the (d-2)-dimensional edge-length ζ d -2 is lower-semicontinuous under this sequential convergence. Here the edge set of the limit generalized polytope is a closed subset of the boundary whose complement in the boundary consists of countably many relatively open planar regions.
|
184 |
An Improved Convex Optimization Model for Two-Dimensional Facility LayoutJankovits, Ibolya 22 January 2007 (has links)
The facility layout design problem is a fundamental optimization problem encountered in many manufacturing and service organizations that was originally formulated in 1963 by Armour & Buffa. This thesis derives a convex programming model, IBIMODEL, that is designed to improve upon the ModCoAR model of Anjos & Vannelli for the facility layout problem with unequal areas. The purpose of IBIMODEL is to find 'good' initial locations for the departments that a second model then uses to produce a detailed solution to the facility layout problem. The proposed model has four ideas behind it: unlike ModCoAR, it does not improve the objective function as the departments start overlapping, it takes into account the aspect ratio requirements, it introduces a systematic approach to making parameter choices, and it uses a new second stage recently proposed by Luo, Anjos & Vannelli to obtain the actual facility layouts. In this way, IBIMODEL efficiently generates a reasonably diverse set of superior solutions that allow the second stage to provide a wide variety of layouts with relatively low aspect ratios and total cost.
The proposed methodology was implemented and numerical results are presented on well-known large layout problems from the literature. To demonstrate the potential of the combination of IBIMODEL with Luo, Anjos & Vannelli's model, our results are compared with the best layouts found to date for these well-known large facility layout problems. The results support the conclusion that the propose a methodology consistently produces competitive, and often improved, layouts for large instances when compared with other approaches in the literature.
|
185 |
Portfolio Selection Under Nonsmooth Convex Transaction CostsPotaptchik, Marina January 2006 (has links)
We consider a portfolio selection problem in the presence of transaction costs. Transaction costs on each asset are assumed to be a convex function of the amount sold or bought. This function can be nondifferentiable in a finite number of points. The objective function of this problem is a sum of a convex twice differentiable function and a separable convex nondifferentiable function. We first consider the problem in the presence of linear constraints and later generalize the results to the case when the constraints are given by the convex piece-wise linear functions. <br /><br /> Due to the special structure, this problem can be replaced by an equivalent differentiable problem in a higher dimension. It's main drawback is efficiency since the higher dimensional problem is computationally expensive to solve. <br /><br /> We propose several alternative ways to solve this problem which do not require introducing new variables or constraints. We derive the optimality conditions for this problem using subdifferentials. First, we generalize an active set method to this class of problems. We solve the problem by considering a sequence of equality constrained subproblems, each subproblem having a twice differentiable objective function. Information gathered at each step is used to construct the subproblem for the next step. We also show how the nonsmoothness can be handled efficiently by using spline approximations. The problem is then solved using a primal-dual interior-point method. <br /><br /> If a higher accuracy is needed, we do a crossover to an active set method. Our numerical tests show that we can solve large scale problems efficiently and accurately.
|
186 |
Local Mixture Model in Hilbert SpaceZhiyue, Huang 26 January 2010 (has links)
In this thesis, we study local mixture models with a Hilbert space structure. First, we consider the fibre bundle structure of local mixture models in a Hilbert space. Next, the spectral decomposition is introduced in order to construct local mixture models. We analyze
the approximation error asymptotically in the Hilbert space. After that, we will discuss the convexity structure of local mixture models. There are two forms of convexity conditions to consider,
first due to positivity in the $-1$-affine structure and the second by points having to lie inside the convex hull of a parametric
family. It is shown that the set of mixture densities is located inside the intersection of the sets defined by these two convexities. Finally, we discuss the impact of the approximation error in the Hilbert space when the domain of mixing variable
changes.
|
187 |
An Improved Convex Optimization Model for Two-Dimensional Facility LayoutJankovits, Ibolya 22 January 2007 (has links)
The facility layout design problem is a fundamental optimization problem encountered in many manufacturing and service organizations that was originally formulated in 1963 by Armour & Buffa. This thesis derives a convex programming model, IBIMODEL, that is designed to improve upon the ModCoAR model of Anjos & Vannelli for the facility layout problem with unequal areas. The purpose of IBIMODEL is to find 'good' initial locations for the departments that a second model then uses to produce a detailed solution to the facility layout problem. The proposed model has four ideas behind it: unlike ModCoAR, it does not improve the objective function as the departments start overlapping, it takes into account the aspect ratio requirements, it introduces a systematic approach to making parameter choices, and it uses a new second stage recently proposed by Luo, Anjos & Vannelli to obtain the actual facility layouts. In this way, IBIMODEL efficiently generates a reasonably diverse set of superior solutions that allow the second stage to provide a wide variety of layouts with relatively low aspect ratios and total cost.
The proposed methodology was implemented and numerical results are presented on well-known large layout problems from the literature. To demonstrate the potential of the combination of IBIMODEL with Luo, Anjos & Vannelli's model, our results are compared with the best layouts found to date for these well-known large facility layout problems. The results support the conclusion that the propose a methodology consistently produces competitive, and often improved, layouts for large instances when compared with other approaches in the literature.
|
188 |
Portfolio Selection Under Nonsmooth Convex Transaction CostsPotaptchik, Marina January 2006 (has links)
We consider a portfolio selection problem in the presence of transaction costs. Transaction costs on each asset are assumed to be a convex function of the amount sold or bought. This function can be nondifferentiable in a finite number of points. The objective function of this problem is a sum of a convex twice differentiable function and a separable convex nondifferentiable function. We first consider the problem in the presence of linear constraints and later generalize the results to the case when the constraints are given by the convex piece-wise linear functions. <br /><br /> Due to the special structure, this problem can be replaced by an equivalent differentiable problem in a higher dimension. It's main drawback is efficiency since the higher dimensional problem is computationally expensive to solve. <br /><br /> We propose several alternative ways to solve this problem which do not require introducing new variables or constraints. We derive the optimality conditions for this problem using subdifferentials. First, we generalize an active set method to this class of problems. We solve the problem by considering a sequence of equality constrained subproblems, each subproblem having a twice differentiable objective function. Information gathered at each step is used to construct the subproblem for the next step. We also show how the nonsmoothness can be handled efficiently by using spline approximations. The problem is then solved using a primal-dual interior-point method. <br /><br /> If a higher accuracy is needed, we do a crossover to an active set method. Our numerical tests show that we can solve large scale problems efficiently and accurately.
|
189 |
Local Mixture Model in Hilbert SpaceZhiyue, Huang 26 January 2010 (has links)
In this thesis, we study local mixture models with a Hilbert space structure. First, we consider the fibre bundle structure of local mixture models in a Hilbert space. Next, the spectral decomposition is introduced in order to construct local mixture models. We analyze
the approximation error asymptotically in the Hilbert space. After that, we will discuss the convexity structure of local mixture models. There are two forms of convexity conditions to consider,
first due to positivity in the $-1$-affine structure and the second by points having to lie inside the convex hull of a parametric
family. It is shown that the set of mixture densities is located inside the intersection of the sets defined by these two convexities. Finally, we discuss the impact of the approximation error in the Hilbert space when the domain of mixing variable
changes.
|
190 |
Convex relaxation for the planted clique, biclique, and clustering problemsAmes, Brendan January 2011 (has links)
A clique of a graph G is a set of pairwise adjacent nodes of G. Similarly, a biclique (U, V ) of a bipartite graph G is a pair of disjoint, independent vertex sets such that each node in U is adjacent to every node in V in G. We consider the problems of identifying the maximum clique of a graph, known as the maximum clique problem, and identifying the biclique (U, V ) of a bipartite graph that maximizes the product |U | · |V |, known as the maximum edge biclique problem. We show that finding a clique or biclique of a given size in a graph is equivalent to finding a rank one matrix satisfying a particular set of linear constraints. These problems can be formulated as rank minimization problems and relaxed to convex programming by replacing rank with its convex envelope, the nuclear norm. Both problems are NP-hard yet we show that our relaxation is exact in the case that the input graph contains a large clique or biclique plus additional nodes and edges. For each problem, we provide two analyses of when our relaxation is exact. In the first,
the diversionary edges are added deterministically by an adversary. In the second, each potential edge is added to the graph independently at random with fixed probability p. In the random case, our bounds match the earlier bounds of Alon, Krivelevich, and Sudakov, as well as Feige and Krauthgamer for the maximum clique problem.
We extend these results and techniques to the k-disjoint-clique problem. The maximum node k-disjoint-clique problem is to find a set of k disjoint cliques of a given input graph containing the maximum number of nodes. Given input graph G and nonnegative edge
weights w, the maximum mean weight k-disjoint-clique problem seeks to identify the set of k disjoint cliques of G that maximizes the sum of the average weights of the edges, with respect to w, of the complete subgraphs of G induced by the cliques. These problems may be considered as a way to pose the clustering problem. In clustering, one wants to partition a given data set so that the data items in each partition or cluster are similar and the items in different clusters are dissimilar. For the graph G such that the set of nodes represents a given data set and any two nodes are adjacent if and only if the corresponding items are similar, clustering the data into k disjoint clusters is equivalent to partitioning G into k-disjoint cliques. Similarly, given a complete graph with nodes corresponding to a given data set and edge weights indicating similarity between each pair of items, the data may be clustered by solving the maximum mean weight k-disjoint-clique problem.
We show that both instances of the k-disjoint-clique problem can be formulated as rank constrained optimization problems and relaxed to semidefinite programs using the nuclear norm relaxation of rank. We also show that when the input instance corresponds to a collection of k disjoint planted cliques plus additional edges and nodes, this semidefinite relaxation is exact for both problems. We provide theoretical bounds that guarantee exactness of our relaxation and provide empirical examples of successful applications of our algorithm to synthetic data sets, as well as data sets from clustering applications.
|
Page generated in 0.2852 seconds