Spelling suggestions: "subject:"convex kontextintegration"" "subject:"convex migrantintegration""
1 |
Piecewise constant subsolutions for the incompressible Euler and IPM equationsFörster, Clemens 02 February 2018 (has links)
No description available.
|
2 |
Onsager's Conjecture / Die Vermutung von OnsagerBuckmaster, Tristan 15 September 2014 (has links) (PDF)
In 1949, Lars Onsager in his famous note on statistical hydrodynamics conjectured that weak solutions to the 3-D incompressible Euler equations belonging to Hölder spaces with Hölder exponent greater than 1/3 conserve kinetic energy; conversely, he conjectured the existence of solutions belonging to any Hölder space with exponent less
than 1/3 which do not conserve kinetic energy. The first part, relating to conservation of kinetic energy, has since been confirmed (cf. Eyink 1994, Constantin-E-Titi 1994). The second part, relating to the existence of non-conservative solutions, remains an open conjecture and
is the subject of this dissertation.
In groundbreaking work of De Lellis and Székelyhidi Jr. (2012), the
authors constructed the first examples of non-conservative Hölder continuous weak solutions to the Euler equations. The construction was subsequently improved by Isett (2012/2013), introducing many novel ideas in order to construct 1/5− Hölder continuous weak solutions with compact support in time.
Adhering more closely to the original scheme of De Lellis and Székelyhidi Jr., we present a comparatively simpler construction of 1/5− Hölder continuous non-conservative weak solutions which may in addition be made to obey a prescribed kinetic energy profile. Furthermore, we extend this scheme in order to construct weak non-conservative solutions to the Euler equations whose Hölder 1/3− norm is Lebesgue integrable in time.
The dissertation will be primarily based on three papers, two of which being in collaboration with De Lellis and Székelyhidi Jr.
|
3 |
Oscillatory Solutions to Hyperbolic Conservation Laws and Active Scalar Equations / Oszillierende Lösungen von hyperbolischen Erhaltungsgleichungen und aktiven skalaren GleichungenKnott, Gereon 12 September 2013 (has links) (PDF)
In dieser Arbeit werden zwei Klassen von Evolutionsgleichungen in einem Matrixraum-Setting studiert: Hyperbolische Erhaltungsgleichungen und aktive skalare Gleichungen. Für erstere wird untersucht, wann man Oszillationen mit Hilfe polykonvexen Maßen ausschließen kann; für Zweitere wird mit Hilfe von Oszillationen gezeigt, dass es unendlich viele periodische schwache Lösungen gibt.
|
4 |
Onsager's ConjectureBuckmaster, Tristan 22 August 2014 (has links)
In 1949, Lars Onsager in his famous note on statistical hydrodynamics conjectured that weak solutions to the 3-D incompressible Euler equations belonging to Hölder spaces with Hölder exponent greater than 1/3 conserve kinetic energy; conversely, he conjectured the existence of solutions belonging to any Hölder space with exponent less
than 1/3 which do not conserve kinetic energy. The first part, relating to conservation of kinetic energy, has since been confirmed (cf. Eyink 1994, Constantin-E-Titi 1994). The second part, relating to the existence of non-conservative solutions, remains an open conjecture and
is the subject of this dissertation.
In groundbreaking work of De Lellis and Székelyhidi Jr. (2012), the
authors constructed the first examples of non-conservative Hölder continuous weak solutions to the Euler equations. The construction was subsequently improved by Isett (2012/2013), introducing many novel ideas in order to construct 1/5− Hölder continuous weak solutions with compact support in time.
Adhering more closely to the original scheme of De Lellis and Székelyhidi Jr., we present a comparatively simpler construction of 1/5− Hölder continuous non-conservative weak solutions which may in addition be made to obey a prescribed kinetic energy profile. Furthermore, we extend this scheme in order to construct weak non-conservative solutions to the Euler equations whose Hölder 1/3− norm is Lebesgue integrable in time.
The dissertation will be primarily based on three papers, two of which being in collaboration with De Lellis and Székelyhidi Jr.
|
5 |
Matematická analýza rovnic popisujících pohyb stlačitelných tekutin / Mathematical analysis of fluids in motionMichálek, Martin January 2017 (has links)
The aim of this work is to provide new results of global existence for dif- ferent evolution equations of fluid mechanics. We are in general interested in finding weak solutions without restrictions on the size of initial data. The proofs of existence are based on several different approaches including en- ergy methods, convergence analysis of finite numerical methods and convex integration. All these techniques significantly exploit results of mathematical analysis and other branches of mathematics. 1
|
6 |
Oscillatory Solutions to Hyperbolic Conservation Laws and Active Scalar EquationsKnott, Gereon 09 September 2013 (has links)
In dieser Arbeit werden zwei Klassen von Evolutionsgleichungen in einem Matrixraum-Setting studiert: Hyperbolische Erhaltungsgleichungen und aktive skalare Gleichungen. Für erstere wird untersucht, wann man Oszillationen mit Hilfe polykonvexen Maßen ausschließen kann; für Zweitere wird mit Hilfe von Oszillationen gezeigt, dass es unendlich viele periodische schwache Lösungen gibt.
|
Page generated in 0.1062 seconds