• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conway's Link Polynomial: a Generalization of the Classic Alexander's Knot Polynomial

Woodard, Mary Kay 12 1900 (has links)
The problem under consideration is that of determining a simple and effective invariant of knots. To this end, the Conway polynomial is defined as a generalization of Alexander's original knot polynomial. It is noted, however, that the Conway polynomial is not a complete invariant. If two knots are equivalent, as defined in this investigation, then they receive identical polynomials. Yet, if two knots have identical polynomials, no information about their equivalence may be obtained. To define the Conway polynomial, the Axioms for Computation are given and many examples of their use are included. A major result of this investigation is the proof of topological invariance of these polynomials and the proof that the axioms are sufficient for the calculation of the knot polynomial for any given knot or link.
2

John Horton Conway: The Man and His Knot Theory

Ketron, Dillon 01 May 2022 (has links)
John Horton Conway was a British mathematician in the twentieth century. He made notable achievements in fields such as algebra, number theory, and knot theory. He was a renowned professor at Cambridge University and later Princeton. His contributions to algebra include his discovery of the Conway group, a group in twenty-four dimensions, and the Conway Constellation. He contributed to number theory with his development of the surreal numbers. His Game of Life earned him long-lasting fame. He contributed to knot theory with his developments of the Conway polynomial, Conway sphere, and Conway notation.

Page generated in 0.0433 seconds