• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-scale texture analysis of remote sensing images using gabor filter banks and wavelet transforms

Ravikumar, Rahul 15 May 2009 (has links)
Traditional remote sensing image classification has primarily relied on image spectral information and texture information was ignored or not fully utilized. Existing remote sensing software packages have very limited functionalities with respect to texture information extraction and utilization. This research focuses on the use of multi-scale image texture analysis techniques using Gabor filter banks and Wavelet transformations. Gabor filter banks model texture as irradiance patterns in an image over a limited range of spatial frequencies and orientations. Using Gabor filters, each image texture can be differentiated with respect to its dominant spatial frequency and orientation. Wavelet transformations are useful for decomposition of an image into a set of images based on an orthonormal basis. Dyadic transformations are applied to generate a multi-scale image pyramid which can be used for texture analysis. The analysis of texture is carried out using both artificial textures and remotely sensed image corresponding to natural scenes. This research has shown that texture can be extracted and incorporated in conventional classification algorithms to improve the accuracy of classified results. The applicability of Gabor filter banks and Wavelets is explored for classifying and segmenting remote sensing imagery for geographical applications. A qualitative and quantitative comparison between statistical texture indicators and multi-scale texture indicators has been performed. Multi-scale texture indicators derived from Gabor filter banks have been found to be very effective due to the nature of their configurability to target specific textural frequencies and orientations in an image. Wavelet transformations have been found to be effective tools in image texture analysis as they help identify the ideal scale at which texture indicators need to be measured and reduce the computation time taken to derive statistical texture indicators. A robust set of software tools for texture analysis has been developed using the popular .NET and ArcObjects. ArcObjects has been chosen as the API of choice, as these tools can be seamlessly integrated into ArcGIS. This will aid further exploration of image texture analysis by the remote sensing community.
2

Multi-scale texture analysis of remote sensing images using gabor filter banks and wavelet transforms

Ravikumar, Rahul 15 May 2009 (has links)
Traditional remote sensing image classification has primarily relied on image spectral information and texture information was ignored or not fully utilized. Existing remote sensing software packages have very limited functionalities with respect to texture information extraction and utilization. This research focuses on the use of multi-scale image texture analysis techniques using Gabor filter banks and Wavelet transformations. Gabor filter banks model texture as irradiance patterns in an image over a limited range of spatial frequencies and orientations. Using Gabor filters, each image texture can be differentiated with respect to its dominant spatial frequency and orientation. Wavelet transformations are useful for decomposition of an image into a set of images based on an orthonormal basis. Dyadic transformations are applied to generate a multi-scale image pyramid which can be used for texture analysis. The analysis of texture is carried out using both artificial textures and remotely sensed image corresponding to natural scenes. This research has shown that texture can be extracted and incorporated in conventional classification algorithms to improve the accuracy of classified results. The applicability of Gabor filter banks and Wavelets is explored for classifying and segmenting remote sensing imagery for geographical applications. A qualitative and quantitative comparison between statistical texture indicators and multi-scale texture indicators has been performed. Multi-scale texture indicators derived from Gabor filter banks have been found to be very effective due to the nature of their configurability to target specific textural frequencies and orientations in an image. Wavelet transformations have been found to be effective tools in image texture analysis as they help identify the ideal scale at which texture indicators need to be measured and reduce the computation time taken to derive statistical texture indicators. A robust set of software tools for texture analysis has been developed using the popular .NET and ArcObjects. ArcObjects has been chosen as the API of choice, as these tools can be seamlessly integrated into ArcGIS. This will aid further exploration of image texture analysis by the remote sensing community.
3

Texture analysis in the Logarithmic Image Processing (LIP) framework

Inam Ul Haq, Muhammad 27 June 2013 (has links) (PDF)
This thesis looks at the evaluation of textures in two different perspectives using logarithmic image processing (LIP) framework. The first case after introducing the concept of textures and giving some classical approaches of textures evaluation, it gives an original approach of textures evaluation called covariogram which is derived from similarity metrics like distances or correlations etc. The classical covariogram which is derived from the classical similarity metrics and LIP covariogram are then applied over several images and the efficiency of the LIP one is clearly shown for darkened images. The last two chapters offer a new approach by considering the gray levels of an image as the phases of a medium. Each phase simulates like a percolation of a liquid in a medium defining the percolation trajectories. The propagation from one pixel to another is taken as easy or difficult determined by the difference of the gray level intensities. Finally different parameters like fractality from fractal dimensions, mean histogram etc associated to these trajectories are derived, based on which the primary experiment for the classification of random texture is carried out determining the relevance of this idea. Obviously, our study is only first approach and requires additional workout to obtain a reliable method of classification
4

Texture analysis in the Logarithmic Image Processing (LIP) framework / L’analyse des textures dans la cadre LIP (Logarithmic Image Processing)

Inam Ul Haq, Muhammad 27 June 2013 (has links)
En fait, le concept de texture n’est pas facile à définir, mais il est clair qu’il est fortement lié au Système Visuel Humain. Sachant que le Modèle LIP est compatible avec la vision humaine, il nous a semblé intéressant de créer des outils logarithmiques dédiés à l’évaluation de la texture. Nous nous sommes concentrés sur la notion de covariogramme, qui peut être pilotée par diverses métriques logarithmiques. Ces métriques jouent le rôle d’outils de “corrélation”, avec l’avantage de prendre en compte la vision humaine. De plus, les outils LIP sont peu dépendants des conditions d’éclairement et fournissent donc des résultats robustes si celles-ci varient. Les deux derniers Chapitres proposent une nouvelle approche consistant à considérer les niveaux de gris d’une image comme les phases d’un milieu. Chaque phase permet de simuler la percolation d’un liquide dans le milieu, définissant ainsi des trajectoires de percolation. Chaque propagation d’un pixel à un autre est considérée comme facile ou non, en fonction des niveaux de gris traversés. Une « fonction de coût » est créée, qui modifie le « temps » de propagation d’un point à l’autre. De plus, la fonction de coût peut être calculée dans le contexte LIP, pour prendre en compte la vision humaine / This thesis looks at the evaluation of textures in two different perspectives using logarithmic image processing (LIP) framework. The first case after introducing the concept of textures and giving some classical approaches of textures evaluation, it gives an original approach of textures evaluation called covariogram which is derived from similarity metrics like distances or correlations etc. The classical covariogram which is derived from the classical similarity metrics and LIP covariogram are then applied over several images and the efficiency of the LIP one is clearly shown for darkened images. The last two chapters offer a new approach by considering the gray levels of an image as the phases of a medium. Each phase simulates like a percolation of a liquid in a medium defining the percolation trajectories. The propagation from one pixel to another is taken as easy or difficult determined by the difference of the gray level intensities. Finally different parameters like fractality from fractal dimensions, mean histogram etc associated to these trajectories are derived, based on which the primary experiment for the classification of random texture is carried out determining the relevance of this idea. Obviously, our study is only first approach and requires additional workout to obtain a reliable method of classification

Page generated in 0.0848 seconds