• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Métodos de busca em coordenada / Coordinate descent methods

Santos, Luiz Gustavo de Moura dos 22 November 2017 (has links)
Problemas reais em áreas como aprendizado de máquina têm chamado atenção pela enorme quantidade de variáveis (> 10^6) e volume de dados. Em problemas dessa escala o custo para se obter e trabalhar com informações de segunda ordem são proibitivos. Tais problemas apresentam características que podem ser aproveitadas por métodos de busca em coordenada. Essa classe de métodos é caracterizada pela alteração de apenas uma ou poucas variáveis a cada iteração. A variante do método comumente descrita na literatura é a minimização cíclica de variáveis. Porém, resultados recentes sugerem que variantes aleatórias do método possuem melhores garantias de convergência. Nessa variante, a cada iteração, a variável a ser alterada é sorteada com uma probabilidade preestabelecida não necessariamente uniforme. Neste trabalho estudamos algumas variações do método de busca em coordenada. São apresentados aspectos teóricos desses métodos, porém focamos nos aspectos práticos de implementação e na comparação experimental entre variações do método de busca em coordenada aplicados a diferentes problemas com aplicações reais. / Real world problemas in areas such as machine learning are known for the huge number of decision variables (> 10^6) and data volume. For such problems working with second order derivatives is prohibitive. These problems have properties that benefits the application of coordinate descent/minimization methods. These kind of methods are defined by the change of a single, or small number of, decision variable at each iteration. In the literature, the commonly found description of this type of method is based on the cyclic change of variables. Recent papers have shown that randomized versions of this method have better convergence properties. This version is based on the change of a single variable chosen randomly at each iteration, based on a fixed, but not necessarily uniform, distribution. In this work we present some theoretical aspects of such methods, but we focus on practical aspects.
2

Métodos de busca em coordenada / Coordinate descent methods

Luiz Gustavo de Moura dos Santos 22 November 2017 (has links)
Problemas reais em áreas como aprendizado de máquina têm chamado atenção pela enorme quantidade de variáveis (> 10^6) e volume de dados. Em problemas dessa escala o custo para se obter e trabalhar com informações de segunda ordem são proibitivos. Tais problemas apresentam características que podem ser aproveitadas por métodos de busca em coordenada. Essa classe de métodos é caracterizada pela alteração de apenas uma ou poucas variáveis a cada iteração. A variante do método comumente descrita na literatura é a minimização cíclica de variáveis. Porém, resultados recentes sugerem que variantes aleatórias do método possuem melhores garantias de convergência. Nessa variante, a cada iteração, a variável a ser alterada é sorteada com uma probabilidade preestabelecida não necessariamente uniforme. Neste trabalho estudamos algumas variações do método de busca em coordenada. São apresentados aspectos teóricos desses métodos, porém focamos nos aspectos práticos de implementação e na comparação experimental entre variações do método de busca em coordenada aplicados a diferentes problemas com aplicações reais. / Real world problemas in areas such as machine learning are known for the huge number of decision variables (> 10^6) and data volume. For such problems working with second order derivatives is prohibitive. These problems have properties that benefits the application of coordinate descent/minimization methods. These kind of methods are defined by the change of a single, or small number of, decision variable at each iteration. In the literature, the commonly found description of this type of method is based on the cyclic change of variables. Recent papers have shown that randomized versions of this method have better convergence properties. This version is based on the change of a single variable chosen randomly at each iteration, based on a fixed, but not necessarily uniform, distribution. In this work we present some theoretical aspects of such methods, but we focus on practical aspects.

Page generated in 0.0986 seconds