Spelling suggestions: "subject:"máquina dde suporte vetorial"" "subject:"máquina dee suporte vetorial""
1 |
Identificação de pacientes com diabetes baseada na variabilidade da frequência cardíacaCaloti, Thiago de Aguiar 13 May 2013 (has links)
Made available in DSpace on 2016-12-23T14:07:23Z (GMT). No. of bitstreams: 1
Thiago de Aguiar Caloti.pdf: 6800429 bytes, checksum: 56d236461c45a8147cd9039de11259d5 (MD5)
Previous issue date: 2013-05-13 / Diabetes mellitus (DM), usually referred to as diabetes, is a chronic disease characterized by hyperglycaemia and leads to specific long-term complications: retinopathy, neuropathy,
nephropathy and cardiomyopathy. Analysis of heart rate variation (HRV), being a noninvasive tool, has become a popular method to assess the activitie of the autonomic nervous system (ANS). Heart rate (HR) are bio-signals that are in constantly changing. These changes may be an indication of current disease or serve as a pre-warning to imminent cardiovascular diseases.
In this work, we analyse HRV signals from 360 normal and 360 diabetic subjects, using time domain, frequency domain and nonlinear techniques. Our results show that the indexes
in the time domain (RRmean, SDNN, RMSSD, pNN50 and D index), in the frequency domain (VLF, LF, HF, HFnorm and LF/HF) and the nonlinear indexes (ApEn, SampEn, SD1, SD2, s,
a1, FD, REC, DET, Lmean, Lmax and ShanEn) are clinically meaningful in the identification of patients with diabetes. The proposed diagnostic system classifies, DM patients and normal
subjects, with an accuracy of 75:69%, specificity of 80:56% and sensitivity of 70:83% / O diabetes mellitus (DM), usualmente referido como diabetes, é uma doença crônica caracterizada por hiperglicemia e leva a complicações específicas a longo prazo: retinopatia,
neuropatia, nefropatia e cardiopatia. A análise da variabilidade da frequência cardíaca (VFC), sendo uma ferramenta não invasiva, tornou-se um método amplamente empregado
em pesquisas para avaliar a atividade do sistema nervoso autônomo (SNA). A frequência cardíaca (FC) é sinal biológico que está em constante mudança. Essas mudanças podem ser
um indício de doença ou servir como um indicativo de iminentes doenças cardiovasculares.
Neste trabalho, analisam-se sinais de VFC de 360 indivíduos saudáveis e 360 indivíduos diabéticos, usando métodos no domínio do tempo, no domínio da frequência e técnicas
não lineares. Os resultados mostram que os índices no domínio do tempo (RRmean, SDNN, RMSSD, pNN50 e D index), no domínio da frequência (VLF, LF, HF, HFnorm e LF/HF) e os
índices não lineares (ApEn, SampEn, SD1, SD2, s, a1, FD, REC, DET, Lmean, Lmax e ShanEn) são clinicamente significativos na identificação de pacientes com diabetes. O sistema
de diagnóstico proposto classifica indivíduos saudáveis e com DM, com acurácia de 75:69%, especificidade de 80:56% e sensibilidade de 70:83%
|
2 |
Estudo comparativo de previsão entre redes neurais, máquina de suporte vetorial e modelos lineares : uma aplicação à estrutura a termo das taxas de jurosAMARAL JÚNIOR, João Bosco 02 March 2012 (has links)
Submitted by Israel Vieira Neto (israel.vieiraneto@ufpe.br) on 2015-03-04T13:35:55Z
No. of bitstreams: 2
Dissertação João Bosco.pdf: 775246 bytes, checksum: fab75de75ad24ab761c0708acca1fce7 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-04T13:35:55Z (GMT). No. of bitstreams: 2
Dissertação João Bosco.pdf: 775246 bytes, checksum: fab75de75ad24ab761c0708acca1fce7 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2012-03-02 / A tarefa de prever o comportamento das taxas de juros sempre esteve no círculo de
interesse de economistas, profissionais de mercado e governo. Pensando na gestão
eficiente dos seus recursos, esses agentes econômicos precisam prever adequadamente a
estrutura a termo das taxas de juros (ETTJ). Tendo em vista, então, a importância do
assunto, uma vasta literatura que trata da estimação e da previsão da ETTJ pode ser
encontrada. Esta pesquisa pretende contribuir na área de previsão de juros ao fazer uso
de duas técnicas não-lineares cuja aplicação ainda é escassa no mercado brasileiro de
renda fixa: Redes Neurais Artificiais (RNA) e Máquina de Suporte Vetorial (MSV). A
fim de investigar se o desempenho preditivo dessas duas técnicas é melhor que o de
modelos baseados na hipótese da linearidade, foram estimados modelos do tipo Vetor
Autorregressivo com correção de erros (VEC) e ARIMA. Com a intenção de se
examinar a significância dos resultados, o teste de Diebold e Mariano (1995) – para
avaliar a precisão da previsão – foi aplicado. Os principais resultados são que os
modelos não-lineares se mostraram mais precisos que os lineares, na previsão; e a MSV
superou a RNA para cinco de seis maturidades da ETTJ. Investigando a literatura
relacionada, pode-se concluir que não há um consenso em torno desses resultados,
existindo estudos na direção contrária e a favor.
|
3 |
Utilização de máquinas de suporte vetorial para predição de estruturas terciárias de proteínas / Support vector machine for tertiary structure predictionBisognin, Gustavo 08 March 2007 (has links)
Made available in DSpace on 2015-03-05T13:58:25Z (GMT). No. of bitstreams: 0
Previous issue date: 8 / Nenhuma / A estrutura tridimensional de uma proteína está diretamente ligada a sua função. Diversos projetos de seqüenciamento genéticos acumulam um grande número de seqüências de proteínas cujas estruturas primárias e secundárias são
conhecidas. Entretanto, as informações sobre suas estruturas tridimensionais estão disponíveis somente para uma pequena fração destas proteínas. Este fato evidencia a necessidade da criação de métodos automáticos para a predição de estruturas
terciárias de proteínas a partir de suas estruturas primárias. Conseqüentemente, ferramentas computacionais são utilizadas para o tratamento, seleção e análise destes
dados. Atualmente, um novo método de aprendizado de máquina denominado Máquina de Suporte Vetorial (MSV) tem superado métodos tradicionais como as Redes Neurais Artificiais (RNA) no tratamento de problemas de classicação. Nesta dissertação utilizamos as MSV para a classicação automática de proteínas. A principal contribuição deste trabalho foi a metodologia proposta para o tratamen / The three-dimensional structure of a protein is directly related to its function. Many projects of genetic sequence analysis accumulate a great number of protein sequences whose primary and secondary structures are known. However, the information on its three-dimensional structures are available only for a small fraction of these proteins. This fact evidences the necessity of creation of automatic methods for the prediction of tertiary protein structures from its primary structures. Consequently, computational tools are used for the treatment, election and analysis of these data. Currently, a new method of machine learning called Support Vector Machine (SVM) has surpassed traditional methods as Artificial Neural Networks (ANN) in the treatment of classication problems. In this master thesis we use the SVM for the automatic protein classication. The main contribution of this work was the methodology proposal for the treatment of the problem. This methodology consists in composing the support vectors with the v
|
4 |
Métodos de busca em coordenada / Coordinate descent methodsSantos, Luiz Gustavo de Moura dos 22 November 2017 (has links)
Problemas reais em áreas como aprendizado de máquina têm chamado atenção pela enorme quantidade de variáveis (> 10^6) e volume de dados. Em problemas dessa escala o custo para se obter e trabalhar com informações de segunda ordem são proibitivos. Tais problemas apresentam características que podem ser aproveitadas por métodos de busca em coordenada. Essa classe de métodos é caracterizada pela alteração de apenas uma ou poucas variáveis a cada iteração. A variante do método comumente descrita na literatura é a minimização cíclica de variáveis. Porém, resultados recentes sugerem que variantes aleatórias do método possuem melhores garantias de convergência. Nessa variante, a cada iteração, a variável a ser alterada é sorteada com uma probabilidade preestabelecida não necessariamente uniforme. Neste trabalho estudamos algumas variações do método de busca em coordenada. São apresentados aspectos teóricos desses métodos, porém focamos nos aspectos práticos de implementação e na comparação experimental entre variações do método de busca em coordenada aplicados a diferentes problemas com aplicações reais. / Real world problemas in areas such as machine learning are known for the huge number of decision variables (> 10^6) and data volume. For such problems working with second order derivatives is prohibitive. These problems have properties that benefits the application of coordinate descent/minimization methods. These kind of methods are defined by the change of a single, or small number of, decision variable at each iteration. In the literature, the commonly found description of this type of method is based on the cyclic change of variables. Recent papers have shown that randomized versions of this method have better convergence properties. This version is based on the change of a single variable chosen randomly at each iteration, based on a fixed, but not necessarily uniform, distribution. In this work we present some theoretical aspects of such methods, but we focus on practical aspects.
|
5 |
Mapeamento de ambientes externos utilizando robôs móveis / Outdoor mapping using mobile robotsHata, Alberto Yukinobu 24 May 2010 (has links)
A robótica móvel autônoma é uma área relativamente recente que tem como objetivo a construção de mecanismos capazes de executar tarefas sem a necessidade de um controlador humano. De uma forma geral, a robótica móvel defronta com três problemas fundamentais: mapeamento de ambientes, localização e navegação do robô. Sem esses elementos, o robô dificilmente poderia se deslocar autonomamente de um lugar para outro. Um dos problemas existentes nessa área é a atuação de robôs móveis em ambientes externos como parques e regiões urbanas, onde a complexidade do cenário é muito maior em comparação aos ambientes internos como escritórios e casas. Para exemplificar, nos ambientes externos os sensores estão sujeitos às condições climáticas (iluminação do sol, chuva e neve). Além disso, os algoritmos de navegação dos robôs nestes ambientes devem tratar uma quantidade bem maior de obstáculos (pessoas, animais e vegetações). Esta dissertação apresenta o desenvolvimento de um sistema de classificação da navegabilidade de terrenos irregulares, como por exemplo, ruas e calçadas. O mapeamento do cenário é realizado através de uma plataforma robótica equipada com um sensor laser direcionado para o solo. Foram desenvolvidos dois algoritmos para o mapeamento de terrenos. Um para a visualização dos detalhes finos do ambiente, gerando um mapa de nuvem de pontos e outro para a visualização das regiões próprias e impróprias para o tráfego do robô, resultando em um mapa de navegabilidade. No mapa de navegabilidade, são utilizados métodos de aprendizado de máquina supervisionado para classificar o terreno em navegável (regiões planas), parcialmente navegável (grama, casacalho) ou não navegável (obstáculos). Os métodos empregados foram, redes neurais artificais e máquinas de suporte vetorial. Os resultados de classificação obtidos por ambos foram posteriormente comparados para determinar a técnica mais apropriada para desempenhar esta tarefa / Autonomous mobile robotics is a recent research area that focus on the construction of mechanisms capable of executing tasks without a human control. In general, mobile robotics deals with three fundamental problems: environment mapping, robot localization and navigation. Without these elements, the robot hardly could move autonomously from a place to another. One problem of this area is the operation of the mobile robots in outdoors (e.g. parks and urban areas), which are considerably more complex than indoor environments (e.g. offices and houses). To exemplify, in outdoor environments, sensors are subjected to weather conditions (sunlight, rain and snow), besides that the navigation algorithms must process a larger quantity of obstacles (people, animals and vegetation). This dissertation presents the development of a system that classifies the navigability of irregular terrains, like streets and sidewalks. The scenario mapping has been done using a robotic platform equipped with a laser range finder sensor directed to the ground. Two terrain mapping algorithms has been devolped. One for environment fine details visualization, generating a point cloud map, and other to visualize appropriated and unappropriated places to robot navigation, resulting in a navigability map. In this map, it was used supervised learning machine methods to classify terrain portions in navigable (plane regions), partially navigable (grass, gravel) or non-navigable (obstacles). The classification methods employed were artificial neural networks and support vector machines. The classification results obtained by both were later compared to determine the most appropriated technique to execute this task
|
6 |
Mapeamento de ambientes externos utilizando robôs móveis / Outdoor mapping using mobile robotsAlberto Yukinobu Hata 24 May 2010 (has links)
A robótica móvel autônoma é uma área relativamente recente que tem como objetivo a construção de mecanismos capazes de executar tarefas sem a necessidade de um controlador humano. De uma forma geral, a robótica móvel defronta com três problemas fundamentais: mapeamento de ambientes, localização e navegação do robô. Sem esses elementos, o robô dificilmente poderia se deslocar autonomamente de um lugar para outro. Um dos problemas existentes nessa área é a atuação de robôs móveis em ambientes externos como parques e regiões urbanas, onde a complexidade do cenário é muito maior em comparação aos ambientes internos como escritórios e casas. Para exemplificar, nos ambientes externos os sensores estão sujeitos às condições climáticas (iluminação do sol, chuva e neve). Além disso, os algoritmos de navegação dos robôs nestes ambientes devem tratar uma quantidade bem maior de obstáculos (pessoas, animais e vegetações). Esta dissertação apresenta o desenvolvimento de um sistema de classificação da navegabilidade de terrenos irregulares, como por exemplo, ruas e calçadas. O mapeamento do cenário é realizado através de uma plataforma robótica equipada com um sensor laser direcionado para o solo. Foram desenvolvidos dois algoritmos para o mapeamento de terrenos. Um para a visualização dos detalhes finos do ambiente, gerando um mapa de nuvem de pontos e outro para a visualização das regiões próprias e impróprias para o tráfego do robô, resultando em um mapa de navegabilidade. No mapa de navegabilidade, são utilizados métodos de aprendizado de máquina supervisionado para classificar o terreno em navegável (regiões planas), parcialmente navegável (grama, casacalho) ou não navegável (obstáculos). Os métodos empregados foram, redes neurais artificais e máquinas de suporte vetorial. Os resultados de classificação obtidos por ambos foram posteriormente comparados para determinar a técnica mais apropriada para desempenhar esta tarefa / Autonomous mobile robotics is a recent research area that focus on the construction of mechanisms capable of executing tasks without a human control. In general, mobile robotics deals with three fundamental problems: environment mapping, robot localization and navigation. Without these elements, the robot hardly could move autonomously from a place to another. One problem of this area is the operation of the mobile robots in outdoors (e.g. parks and urban areas), which are considerably more complex than indoor environments (e.g. offices and houses). To exemplify, in outdoor environments, sensors are subjected to weather conditions (sunlight, rain and snow), besides that the navigation algorithms must process a larger quantity of obstacles (people, animals and vegetation). This dissertation presents the development of a system that classifies the navigability of irregular terrains, like streets and sidewalks. The scenario mapping has been done using a robotic platform equipped with a laser range finder sensor directed to the ground. Two terrain mapping algorithms has been devolped. One for environment fine details visualization, generating a point cloud map, and other to visualize appropriated and unappropriated places to robot navigation, resulting in a navigability map. In this map, it was used supervised learning machine methods to classify terrain portions in navigable (plane regions), partially navigable (grass, gravel) or non-navigable (obstacles). The classification methods employed were artificial neural networks and support vector machines. The classification results obtained by both were later compared to determine the most appropriated technique to execute this task
|
7 |
Métodos de busca em coordenada / Coordinate descent methodsLuiz Gustavo de Moura dos Santos 22 November 2017 (has links)
Problemas reais em áreas como aprendizado de máquina têm chamado atenção pela enorme quantidade de variáveis (> 10^6) e volume de dados. Em problemas dessa escala o custo para se obter e trabalhar com informações de segunda ordem são proibitivos. Tais problemas apresentam características que podem ser aproveitadas por métodos de busca em coordenada. Essa classe de métodos é caracterizada pela alteração de apenas uma ou poucas variáveis a cada iteração. A variante do método comumente descrita na literatura é a minimização cíclica de variáveis. Porém, resultados recentes sugerem que variantes aleatórias do método possuem melhores garantias de convergência. Nessa variante, a cada iteração, a variável a ser alterada é sorteada com uma probabilidade preestabelecida não necessariamente uniforme. Neste trabalho estudamos algumas variações do método de busca em coordenada. São apresentados aspectos teóricos desses métodos, porém focamos nos aspectos práticos de implementação e na comparação experimental entre variações do método de busca em coordenada aplicados a diferentes problemas com aplicações reais. / Real world problemas in areas such as machine learning are known for the huge number of decision variables (> 10^6) and data volume. For such problems working with second order derivatives is prohibitive. These problems have properties that benefits the application of coordinate descent/minimization methods. These kind of methods are defined by the change of a single, or small number of, decision variable at each iteration. In the literature, the commonly found description of this type of method is based on the cyclic change of variables. Recent papers have shown that randomized versions of this method have better convergence properties. This version is based on the change of a single variable chosen randomly at each iteration, based on a fixed, but not necessarily uniform, distribution. In this work we present some theoretical aspects of such methods, but we focus on practical aspects.
|
Page generated in 0.1225 seconds