• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 377
  • 75
  • 69
  • 66
  • 24
  • 23
  • 18
  • 13
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 800
  • 340
  • 168
  • 153
  • 126
  • 124
  • 98
  • 97
  • 77
  • 77
  • 71
  • 68
  • 66
  • 61
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Modification of surfaces using grafted polymers : a self consistent field theory study

Trombly, David Matthew 12 October 2011 (has links)
This research focuses on the modeling of surfaces decorated by grafted polymers in order to understand their structure, energetics, and phase behavior. The systems studied include flat and curved surfaces, grafted homopolymers and random copolymers, and in the presence of solvent conditions, homopolymer melt conditions, and diblock copolymer melt conditions. We use self-consistent field theory to study these systems, thereby furthering the development of new tools especially applicable in describing curved particle systems and systems with chemical polydispersity. We study a polymer-grafted spherical particle interacting with a bare particle in a good solvent as a model system for a polymer-grafted drug interacting with a blood protein in vivo. We calculate the energy of interaction between the two particles as a function of grafting density, particle sizes, and particle curvature by solving the self-consistent field equations in bispherical coordinates. Also, we compare our results to those predicted by the Derjaguin approximation. We extend the previous study to describe the case of two grafted particles interacting in a polymer melt composed of chains that are chemically the same as the grafts, especially in the regime where the particle curvature is significant. This is expected to have ramifications for the dispersion of particles in a polymer nanocomposite. We quantify the interfacial width between the grafted and free polymers and explore its correlation to the interactions between the particles, and use simple scaling theories to justify our results. In collaboration with experimentalists, we study the behavior of the glass transition of polystyrene (PS) films on grafted PS substrates. Using the self consistent field theory methods described above as well as a percolation model, we rationalize the behavior of the glass transition as a function of film thickness, chain lengths, and grafting density. Grafting chemically heterogeneous polymers to surfaces in melt and thin film conditions is also relevant for both particle dispersion and semiconductor applications. To study such systems, we model a random copolymer brush in a melt of homopolymer that is chemically identical to one of the blocks. We modify the self-consistent field theory to take into account the chemical polydispersity of random copolymer systems and use it to calculate interfacial widths and energies as well as to make predictions about the window in which perpendicular morphologies of diblock copolymer are likely to form. We also explore the effect of the rearrangement of the chain ends on the surface energy and use this concept to create a simple modified strong stretching theory that qualitatively agrees with our numerical self-consistent field theory results. We explicitly study the system that is most relevant to semiconductor applications - that of a diblock copolymer melt on top of a substrate modified by a random copolymer brush. We explore the morphologies formed as a function of film thickness, grafting density, chain length, and chain blockiness, and make predictions about the effect of these on the neutral window, that is, the range of brush volume fractions over which perpendicular lamellae are expected to occur. / text
252

Developing a tailored and tunable porous material from solvent controlled catalysis on block copolymers

Sedransk, Kyra Lauren January 2013 (has links)
No description available.
253

Self-assembly behavior in hydrophilic block copolymers

Valverde Serrano, Clara January 2011 (has links)
Block copolymers are receiving increasing attention in the literature. Reports on amphiphilic block copolymers have now established the basis of their self-assembly behavior: aggregate sizes, morphologies and stability can be explained from the absolute and relative block lengths, the nature of the blocks, the architecture and also solvent selectiveness. In water, self-assembly of amphiphilic block copolymers is assumed to be driven by the hydrophobic. The motivation of this thesis is to study the influence on the self-assembly in water of A b B type block copolymers (with A hydrophilic) of the variation of the hydrophilicity of B from non-soluble (hydrophobic) to totally soluble (hydrophilic). Glucose-modified polybutadiene-block-poly(N-isopropylacrylamide) copolymers were prepared and their self-assembly behavior in water studied. The copolymers formed vesicles with an asymmetric membrane with a glycosylated exterior and poly(N-isopropylacrylamide) on the inside. Above the low critical solution temperature (LCST) of poly(N-isopropylacrylamide), the structure collapsed into micelles with a hydrophobic PNIPAM core and glycosylated exterior. This collapse was found to be reversible. As a result, the structures showed a temperature-dependent interaction with L-lectin proteins and were shown to be able to encapsulate organic molecules. Several families of double hydrophilic block copolymers (DHBC) were prepared. The blocks of these copolymers were biopolymers or polymer chimeras used in aqueous two-phase partition systems. Copolymers based on dextran and poly(ethylene glycol) blocks were able to form aggregates in water. Dex6500-b-PEG5500 copolymer spontaneously formed vesicles with PEG as the “less hydrophilic” barrier and dextran as the solubilizing block. The aggregates were found to be insensitive to the polymer's architecture and concentration (in the dilute range) and only mildly sensitive to temperature. Variation of the block length, yielded different morphologies. A longer PEG chain seemed to promote more curved aggregates following the inverse trend usually observed in amphiphilic block copolymers. A shorter dextran promoted vesicular structures as usually observed for the amphiphilic counterparts. The linking function was shown to have an influence of the morphology but not on the self-assembly capability in itself. The vesicles formed by dex6500-b-PEG5500 showed slow kinetics of clustering in the presence of Con A lectin. In addition both dex6500-b-PEG5500 and its crosslinked derivative were able to encapsulate fluorescent dyes. Two additional dextran-based copolymers were synthesized, dextran-b-poly(vinyl alcohol) and dextran-b-poly(vinyl pyrrolidone). The study of their self-assembly allowed to conclude that aqueous two-phase systems (ATPS) is a valid source of inspiration to conceive DHBCs capable of self-assembling. In the second part the principle was extended to polypeptide systems with the synthesis of a poly(N-hydroxyethylglutamine)-block-poly(ethylene glycol) copolymer. The copolymer that had been previously reported to have emulsifying properties was able to form vesicles by direct dissolution of the solid in water. Last, a series of thermoresponsive copolymers were prepared, dextran-b-PNIPAMm. These polymers formed aggregates below the LCST. Their structure could not be unambiguously elucidated but seemed to correspond to vesicles. Above the LCST, the collapse of the PNIPAM chains induced the formation of stable objects of several hundreds of nanometers in radius that evolved with increasing temperature. The cooling of these solution below LCST restored the initial aggregates. This self-assembly of DHBC outside any stimuli of pH, ionic strength, or temperature has only rarely been described in the literature. This work constituted the first formal attempt to frame the phenomenon. Two reasons were accounted for the self-assembly of such systems: incompatibility of the polymer pairs forming the two blocks (enthalpic) and a considerable solubility difference (enthalpic and entropic). The entropic contribution to the positive Gibbs free energy of mixing is believed to arise from the same loss of conformational entropy that is responsible for “the hydrophobic effect” but driven by a competition for water of the two blocks. In that sense this phenomenon should be described as the “hydrophilic effect”. / Blockcopolymere erfahren ein stetig wachsendes Interesse, was an der steigenden Anzahl an Publikationen zu diesem Thema erkennbar ist. Zahlreiche Studien zu amphiphilen Blockcopolymeren haben dabei einige grundlegende Erkenntnisse über deren chemisches und physikalisches Verhalten, vor allem über die Selbstorganisation, hervorgebracht. So können die Größe, die verschiedenen Morphologien und auch die Stabilität der gebildeten Aggregate anhand der relativen und absoluten Blocklängen, die chemischen Struktur der Blöcke, der molekularen Architektur und der Eigenschaften des verwendeten Lösungsmittel erklärt werden. Im speziellen Fall des Wassers als Lösungsmittel bist die Selbstorganisation amphiphiler Blockcopolymere durch den hydrophoben Effekt bedingt. Dieser Arbeit liegt das Interesse an der Selbstorganisation in wässrigem Medium von Blockcopolymeren des Typs A-b-B mit A als hydrophilem Block und B als Block mit variierender Hydrophilie bzw. Hydrophpobie von unlöslich bis vollständig löslich zugrunde. Durch Variation dieser Eigenschaften von Block B soll dessen Einfluss auf das Selbstorganisationsverhalten untersucht werden. Dazu wurden mit Glucose modifizierte Polybutadien-block-Poly(N-Isopropylacrylamid)-Copolymere hergestellt und deren Selbstorganisation in Wasser untersucht. Die Copolymere bilden Vesikel mit einer asymmetrischen Membran, wobei im äußeren Bereich glycolysierte Gruppen und im inneren Bereich Poly(N-Isopropylacrylamid) (PNIPAM) vorliegen. Beim Überschreiten der low critical solution temperature (LCST) kollabiert die vesikuläre Struktur unter Bildung von Mizellen mit einem hydrophoben PNIPAM-Mizellinneren und nach außen gerichteten glycolysierten Blöcken. Diese strukturelle Umwandlung ist reversibel. Die Strukturen zeigten außerdem eine temperaturabhängige Wechselwirkung mit L-Lectin-Proteinen und die Möglichkeit zur Einkapselung organischer Moleküle konnte belegt werden. Des weiteren wurden verschiedene Gruppen von Blockcopolymeren mit zwei hydrophilen Blöcken synthetisiert (double hydrophilic block copolymers – DHBC). Die Blöcke dieser Systeme waren entweder Biopolymere oder Polymerchimäre, die in wässrigen Zwei-Phasen-Trennverfahren eingesetzt werden. Polymere, die auf Dextran- und Poly(ethylenglycol)-Blöcken basieren, zeigen Aggregatbildung in wässriger Phase. Dex6500-b-PEG5500 bildet spontan Vesikel mit PEG als „weniger hydrophilem“ Bestandteil und Dextran als löslichem Block. Die Bildung dieser Vesikel zeigte keine Emfpindlichkeit gegenüber einer Veränderung der Polymerarchitektur und der Konzentration, und nur eine geringe Sensitivität gegenüber Temperaturänderungen. Veränderungen der Blocklängen dagegen beeinflussten die Selbstorganisation und führten zu unterschiedlichen Morphologien. Längere PEG-Blöcke bevorzugten dabei die Bildung eher gekrümmter Aggregate, entgegen dem Trend, der gewöhnlicherweise für amphiphile Blockcopolymere beobachtet wird. Die Verkürzung des Dextran-Blocks fördert die Ausbildung vesikulärer Strukturen, was dem Verhalten der amphiphilen Gegenspieler der DHBC-Systeme entspricht. Die funktionelle Gruppe zur Verbindung der beiden Blöcke hat zwar einen Einfluss auf die Morphologie der gebildeten Aggregate, nicht jedoch auf die eigentliche Fähigkeit der Systeme zur Selbstorganisation. Die Dex6500-b-PEG5500-Vesikel wiesen zudem eine langsame Bildungskinetik in Gegenwart von Con-A-Lectin auf. Des Weiteren waren sowohl Dex6500-b-PEG5500 als auch das quervernetzte Derivate dieses Copolymers in der Lage, Fluoreszenzfarbstoffe einzulagern. Um zu zeigen, dass wässrige Zwei-Phasen-Systeme (aqueous two phase systems – ATPS) eine belastbare Grundlage für die Untersuchung und Entwicklung selbstorganisierender DHBC-Systeme sind, wurden weitere Dextran-basierte Copolymere synthetsisiert: Dextran-b-Poly(vinylalokohol) und Detran-b-Poly(vinylpyrrolidon). In einem zweiten Teil dieser Arbeit wurde das zuvor erarbeitete Prinzip auf auf Polypeptidsysteme ausgeweitet. Dazu wurde ein Poly(N-Hydroxyethylglutamin)-block-Poly(ethylenglycol)-Copolymer hergestellt. Dieses Copolymer, dessen emulgierenden Eigenschaften bereits bekannt waren, wies unmittelbar nach Lösung des Feststoffes in Wasser Vesikelbildung auf. In einem dritten Teil der Studie wurden thermoresponsive Copolymere hergestellt und untersucht: Dextran-b-PNIPAMm. Unterhalb der LCST konnte die Bildung von Aggregaten nachgewiesen werden, deren Struktur nicht zweifelsfrei entschlüsselt werden konnte, wobei jedoch zahlreiche Hinweise auf eine vesikuläre Struktur hindeuten. Oberhalb der LCST wurde durch die Kollabierung der PNIPAM-Ketten die Bildung stabiler Strukturen mit Radien von mehreren hundert Nanometern induziert, deren weitere Entwicklung durch eine weitere Temperaturerhöhung gefördert werden konnte. Durch Rückkühlung in den Temperaturebereich unterhalb der LCST konnten die zuvor beobachteten Aggregate reversibel zurückgebildet werden. Das Selbstorganisationsverhalten von DHBC, unabhängig vom Einfluss des pH-Werts, der Ionenstärke oder der Temperatur are bisher nur in sehr geringem Umfang Gegenstand wissenschaftlicher Veröffentlichungen. Diese Arbeit stellt damit den ersten umfassenden Beitrag zur systematischen Erarbeitung dieses Phänomens dar. Es konnten dabei zwei Ursachen für die beobachteten Selbstorganisationseffekte bestimmt werden: die Inkompatibilität der beiden Polymerblöcke (enthalpischer Effekt) und der Unterschied in deren Löslichkeit (enthalpische und entropische Effekte). Der entropische Beitrag zur positiven Gibbs’schen Freien Mischungsenergie wird dem selben Verlust konformativer Entropie zugeordnet, der auch für den hydrophoben Effekt verantwortlich ist, allerdings angetrieben durch einen Wettbewerb der beiden Polymerblöcke um das Wasser. In diesem Sinne kann man das beobachtete Phänomen als „hydrophilen Effekt“ bezeichnen.
254

Nanopatterned Polymer Coatings for Marine Antifouling Applications

Grozea, Claudia Madalina 12 December 2012 (has links)
Marine biofouling is the accumulation of marine species on surfaces submerged in seawater leading to unwanted problems for man-made surfaces such as hulls of ships and aquaculture nets. Historically, the amount of biofouling was regulated using metal based coatings whose usage have been disused lately due to adverse toxic effects. Alternative environmentally friendly coatings are currently avidly being pursued. Nanopatterned polymer thin films were investigated as potential candidates for marine antifouling coatings. Polystyrene-block-poly(2-vinyl pyridine) and polystyrene-block-poly(methyl methacrylate) diblock copolymer thin films self-assembled using vapor solvent annealing into cylinders perpendicular to the substrate composed of poly(2-vinyl pyridine) or poly(methyl methacrylate) respectively with diameters between 30 nm to 82 nm and center-to-center spacing between 46 nm to 113 nm in a polystyrene matrix on various substrates such as silicon or nylon. Polystyrene-block-poly(2-vinyl pyridine) copolymers were also mixed with the photoinitiator benzophenone and irradiated with ultraviolet light to crosslink the polymer chains and decrease the surface hydrophobicity. In the case of polystyrene-block-poly(methyl methacrylate), the yield of these nanopatterned films increased with the modification of the vapor annealing method. A low temperature vapor annealing technique was developed in which the annealing occurs at 2 °C. In another strategy, polystyrene and poly(2-vinyl pyridine) homopolymers were nanopatterned with alternating lines and grooves with widths between 200 nm and 900 nm and depths between 15 nm to 100 nm using Thermal Nanoimprint Lithography. Poly(2-vinyl pyridine) films were synthesized as brushes using surface initiated Atom Transfer Radical Polymerization to produce robust polymer films. The chemical and/or the topographical heterogeneity of the polymer surfaces influenced the settlement of Ulva linza algae zoospores. Overall, the incorporation of nanoscale features enhanced the antifouling properties of the samples. Further exploration of these types of coatings is highly encouraged.
255

Nanopatterned Polymer Coatings for Marine Antifouling Applications

Grozea, Claudia Madalina 12 December 2012 (has links)
Marine biofouling is the accumulation of marine species on surfaces submerged in seawater leading to unwanted problems for man-made surfaces such as hulls of ships and aquaculture nets. Historically, the amount of biofouling was regulated using metal based coatings whose usage have been disused lately due to adverse toxic effects. Alternative environmentally friendly coatings are currently avidly being pursued. Nanopatterned polymer thin films were investigated as potential candidates for marine antifouling coatings. Polystyrene-block-poly(2-vinyl pyridine) and polystyrene-block-poly(methyl methacrylate) diblock copolymer thin films self-assembled using vapor solvent annealing into cylinders perpendicular to the substrate composed of poly(2-vinyl pyridine) or poly(methyl methacrylate) respectively with diameters between 30 nm to 82 nm and center-to-center spacing between 46 nm to 113 nm in a polystyrene matrix on various substrates such as silicon or nylon. Polystyrene-block-poly(2-vinyl pyridine) copolymers were also mixed with the photoinitiator benzophenone and irradiated with ultraviolet light to crosslink the polymer chains and decrease the surface hydrophobicity. In the case of polystyrene-block-poly(methyl methacrylate), the yield of these nanopatterned films increased with the modification of the vapor annealing method. A low temperature vapor annealing technique was developed in which the annealing occurs at 2 °C. In another strategy, polystyrene and poly(2-vinyl pyridine) homopolymers were nanopatterned with alternating lines and grooves with widths between 200 nm and 900 nm and depths between 15 nm to 100 nm using Thermal Nanoimprint Lithography. Poly(2-vinyl pyridine) films were synthesized as brushes using surface initiated Atom Transfer Radical Polymerization to produce robust polymer films. The chemical and/or the topographical heterogeneity of the polymer surfaces influenced the settlement of Ulva linza algae zoospores. Overall, the incorporation of nanoscale features enhanced the antifouling properties of the samples. Further exploration of these types of coatings is highly encouraged.
256

The Copolymerization of CO_(2) and Cyclic Ethers and Their Degradation Pathways

Wei, Sheng-Hsuan 16 December 2013 (has links)
Polycarbonates are found in a variety of common products in daily life due to their favorable mechanical and electrical properties. In addition, they are widely used in biomedical areas due to their stability and biological inertness. Therefore, the production of polycarbonates became an important industrial process in the past decades. However, the current industrial process usually requires toxic phosgene gas as a starting material. Thus, the environmentally benign route by using metal catalyzed couplings of epoxides and CO_(2) to produce polycarbonates has received attention from researchers. In this dissertation, metal catalyzed CO_(2)/cyclic ether copolymerization, depolymerization of polycarbonates, and the equilibria between polycarbonate and corresponding six-membered cyclic carbonate will be investigated. First, the Co(III) catalyzed copolymerizations of CO_(2) and various epoxides with electron-withdrawing substituents to afford polycarbonates are examined. Comparative kinetic studies were performed via in situ infrared measurements as a function of temperature to assess the activation barriers for the production of cyclic carbonate versus copolymer involving electronically different epoxides: styrene oxide, epichlorohydrin, and propylene oxide. Thermodynamically stable cyclic carbonate byproducts are produced during the course of the reaction from the degradations of propagating polymer chains. The depolymerization reactions of several polycarbonates produced from the completely alternating copolymerization of styrene oxide, epichlorohydrin, propylene oxide, cyclohexene oxide, indene oxide, and cyclopentene oxide with carbon dioxide have been investigated. Various reaction pathways can be found under different reaction conditions, including process involving chain-end backbiting and radical intermediates. Temperature-dependent kinetic studies have provided energy of activation barriers for cyclic carbonate formation. In addition, the generated monomeric materials from the degradation of select polycarbonates show the possibility of chemical recycling of plastic waste. For the copolymers made from CO_(2) and oxetane derivatives, this study focuses on the influence of steric hindrance in the 3-position of the monomer oxetane. The (salen)CrCl/onium salt catalyzed coupling reactions of these oxetane derivatives and carbon dioxide are reported. Depolymerizations of copolymers to their corresponding cyclic carbonates were also studied. In addition, several six-membered cyclic carbonates were synthesized to examine their equilibria between monomeric cyclic carbonates and their corresponding polycarbonates.
257

A study on grafting poly(p-phenylene terephthalamide) with aliphatic amines and amides

Li, Haiying January 1999 (has links)
No description available.
258

Mikrophasenseparation von photo-vernetzbaren Blockcopolymeren in dünnen Filmen / micro-phase separation of photo-crosslinkable block copolymers in thin layers

Tietz, Katharina 15 December 2014 (has links)
No description available.
259

Factors Affecting the Growth and Fragmentation of Polyferrocenylsilane Diblock Copolymer Micelles

Qian, Jieshu 20 June 2014 (has links)
Polyferrocenylsilane (PFS) diblock copolymers self-assemble in selective solvents to form one-dimensional micelles for a broad range of polymer compositions and experimental conditions, driven by the crystallization of the PFS block that forms the micelle core. The most striking feature of these micelles is that they remain active for further growth. They can be extended in length when additional polymer, dissolved in a good solvent, is added to a solution of the pre-existing micelles. This thesis describes several studies investigating the factors that affect the growth and fragmentation of PFS diblock copolymer micelles in solution, with a particular emphasis on polyisoprene-PFS (PI-PFS) diblock copolymers. The goal of my research was trying to provide deeper understanding of this crystallization-driven self-assembly (CDSA) process. In an attempt to understand the growth kinetics of the PI-PFS cylindrical micelles, I added tiny amount of short micelle seeds into supersaturated solution of the same polymer, and followed the micelle growth by light scattering. The data analysis showed that the increase of micelle length could be described by an expression with two exponential decay terms. In another attempt to examine the factors that may affect the growth behavior of the PI-PFS micelles, I found that PI-PFS long micelles underwent fragmentation when they were subjected to external stimuli, e.g. addition of polar solvent, or heating. During the course of studying the effect of heating on the micelles, I developed a new approach to generate cylindrical micelles with controllable and uniform length, a one-dimensional analogue of self-seeding of crystalline polymers. I carried out a systematic study to investigate the self-seeding behavior of PFS block copolymers.
260

Factors Affecting the Growth and Fragmentation of Polyferrocenylsilane Diblock Copolymer Micelles

Qian, Jieshu 20 June 2014 (has links)
Polyferrocenylsilane (PFS) diblock copolymers self-assemble in selective solvents to form one-dimensional micelles for a broad range of polymer compositions and experimental conditions, driven by the crystallization of the PFS block that forms the micelle core. The most striking feature of these micelles is that they remain active for further growth. They can be extended in length when additional polymer, dissolved in a good solvent, is added to a solution of the pre-existing micelles. This thesis describes several studies investigating the factors that affect the growth and fragmentation of PFS diblock copolymer micelles in solution, with a particular emphasis on polyisoprene-PFS (PI-PFS) diblock copolymers. The goal of my research was trying to provide deeper understanding of this crystallization-driven self-assembly (CDSA) process. In an attempt to understand the growth kinetics of the PI-PFS cylindrical micelles, I added tiny amount of short micelle seeds into supersaturated solution of the same polymer, and followed the micelle growth by light scattering. The data analysis showed that the increase of micelle length could be described by an expression with two exponential decay terms. In another attempt to examine the factors that may affect the growth behavior of the PI-PFS micelles, I found that PI-PFS long micelles underwent fragmentation when they were subjected to external stimuli, e.g. addition of polar solvent, or heating. During the course of studying the effect of heating on the micelles, I developed a new approach to generate cylindrical micelles with controllable and uniform length, a one-dimensional analogue of self-seeding of crystalline polymers. I carried out a systematic study to investigate the self-seeding behavior of PFS block copolymers.

Page generated in 0.0376 seconds